Mostrar el registro sencillo del ítem

dc.creatorMosquera-Pretelt J., Mejía M.I., Marín J.M.spa
dc.date.accessioned2018-04-13T16:31:24Z
dc.date.available2018-04-13T16:31:24Z
dc.date.created2018
dc.identifier.issn12038407
dc.identifier.urihttp://hdl.handle.net/11407/4527
dc.description.abstractPhotoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.eng
dc.language.isoeng
dc.publisherWalter de Gruyter GmbHspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85037827726&doi=10.26802%2fjaots.2017.0008&partnerID=40&md5=97bd5c12fb50d1925f7a858319ecfcccspa
dc.sourceScopusspa
dc.titleSynthesis and Characterization of Photoactive S-Tio2 from Tioso4 Precursor Using an Integrated Sol-Gel and Solvothermal Method at Low Temperaturesspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationGrupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombiaspa
dc.identifier.doi10.26802/jaots.2017.0008
dc.subject.keywordFormic Acid; Photocatalysis; Sol-gel Method; Solvothermal Method; Titanium Dioxide; Titanium Oxysulfateeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractPhotoactive S-titanium dioxides (S-TiO2) were synthesized from TiOSO4 as only Ti and S precursor using an integrated sol-gel and solvothermal method at low temperatures (200 °C - 250 °C). The effect of the synthesis conditions (molar ratios of water/TiOSO4 and solvent (ethanol)/TiOSO4 as well as temperature, < 250 °C) of the applied method in the properties and the photoactivity of the synthesized materials was evaluated through Box-Behnken experimental design. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), ultraviolet - visible diffuse reflectance spectroscopy (UV/vis-DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosity and BET surface area analysis. The photocatalytic activities of the synthesized S-TiO2 materials were determined by the photodegradation of formic acid. Results indicated that the integrated sol-gel and solvothermal method at low temperatures led to obtain mesoporous, crystalline and photoactive S-TiO2 materials, crystallized as anatase phase with UV and visible light absorption for all synthesis conditions. All synthesized S-TiO2 materials showed high activity in formic acid photodegradation, which was associated on their degrees of crystallinity, particle sizes and sulfur contents, being higher in the materials synthesized with the temperature of 250 °C. Material synthesized with molar ratio water/TiOSO4 of 4.0, molar ratio ethanol/TiOSO4 of 15 and T = 250 °C, showed the highest photocatalytic activity, a crystallite size of 42.34 nm, surface area of 35.77 m2/g, sulfur content of 0.818 wt %, high UV and visible radiation absorption and band gap of 3.03. © 2017.eng
dc.creator.affiliationMosquera-Pretelt, J., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia; Mejía, M.I., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombia, Doctorado en Ingeniería, Facultad de Ingeniería, Universidad de Medellín, Carrera 87, Medellín, Colombia; Marín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70, Medellín, Colombiaspa
dc.relation.ispartofesJournal of Advanced Oxidation Technologiesspa
dc.relation.referencesHidalgo, M.C., Sakthivel, S., Bahnemann, D., (2004) Appl. Catal., A., 277, pp. 183-189; Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., (1995) J. Phys. Chem., 99, pp. 16655-16661; Chen, L., Zhu, J., Liu, Y.M., Cao, Y., Li, H.X., He, H.Y., Dai, W.L., Fan, K.N., (2006) J. Mol. Catal. A: Chem., 255, pp. 260-268; Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., (2012) Ceram. Int., 38, pp. 2233-2237; Ngamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., (2013) Mater. Lett., 105, pp. 76-79; Colón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., (2010) J. Mol. Catal. A: Chem., 320, pp. 14-18; Ẑuni, V., Vukomanovi, M., Ŝkapin, S.D., Suvorov, D., Kova, J., (2014) Ultrason. Sonochem., 21, pp. 367-375; Khomane, R.B., (2011) J. Colloid Interface Sci., 356, pp. 369-372; Hou, J., Yang, X., Lv, X., Huang, M., Wang, Q., Wang, J.J., (2012) Alloys Compd., 511, pp. 202-208; Yeh, S.W., Ko, H.H., Chiang, H.M., Chen, Y.L., Lee, J.H., Wen, C.M., Wang, M.C., (2014) J. Alloys Compd., 613, pp. 107-116; Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A., (2013) J. Alloys Compd., 549, pp. 114-120; He, F., Li, J., Li, T., Li, G., (2014) Chem. Eng. J., 237, pp. 312-321; Vargas, X., Tauchert, E., Marin, J.M., Restrepo, G., Dillert, R., Bahnemann, D., (2012) J. Photochem. and Photobiol., A., 243, pp. 17-22; Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A., (2015) Appl. Catal., B., 168-169, pp. 333-341; Han, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D.D., (2014) Catal. Today., 224, pp. 132-139; Nishikiori, H., Hayashibe, M., Fujii, T., (2013) Catalysts., 3, pp. 363-377; Han, C., Pelaez, M., Likodimos, V., Kontos, A., Falaras, P., O'Shea, K., Dionysiou, D.D., (2011) Appl. Catal., B., 107, pp. 77-87; Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., (2006) Appl. Catal., B., 63, pp. 45-59; McManamon, C., O'Connell, J., Delaney, P., Rasappa, S., Holmes, J., Morris, M.J., (2015) Mol. Catal. A: Chem., 406, pp. 51-57; Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., (2004) Appl. Catal., A., 265, pp. 115-121; Lin, Y.H., Hsueh, H.T., Chang, C.H.W., Chu, H., (2016) Appl. Catal., B., 199, pp. 1-10; Yamazaki, S., Fujinaga, N., Araki, K., (2001) Appl. Catal., A., 210, pp. 97-102; Bakar, S., Riberio, C., (2016) J. Mol. Catal. A: Chem., 412, pp. 78-92; Hussain, S., Khan, K., Hussain, R., (2009) J. Nat. Gas Chem., 18, pp. 383-391; Chen, X., Kuo, D.H., Lu, D., (2017) Adv. Powder Technol., 28, pp. 1213-1220; Zhang, D., Wang, J.J., (2015) Water Process Eng., 7, pp. 187-195; Zeng, F., Luo, D., Zhang, Z., Liang, B., Yuan, X., Fu, L., (2016) J. Alloys Compd., 670, pp. 249-257; Murcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., (2015) Appl. Catal., B., 179, pp. 305-312; Yang, G., Ding, H., Chen, D., Ao, W., Wang, J., Hou, X., (2016) Appl. Surf. Sci., 376, pp. 227-235; Tian, C., Zhang, Z., Hou, J., Luo, N., (2008) Mate. Lett., 62, pp. 77-80; Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W., (2016) Int. J. Hydrogen Energy, 41, pp. 1535-1541; He, F., Ma, F., Li, T., Li, G., (2013) Chin. J. Catal., 34, pp. 2263-2270; Myers, R.H., Montgomery, D.C., Anderson-Cook, C.H.M., (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Ed, pp. 317-320. , New Jersey: John Wiley & Sons; You, Y.F., Xu, C.H., Xu, S.S., Cao, S., Wang, J.P., Huang, Y.B., Shi, S.Q., (2014) Ceram. Int., 40, pp. 8659-8666; Bellardita, M., Di Paola, A., Megna, B., Palmisano, L., (2017) Appl. Catal., B., 201, pp. 150-158; Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K.G.K., (2002) Mater. Lett., 57, pp. 330-335; Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., (2000) J. Phys. D: Appl. Phys., 33, pp. 912-916; Choi, H.C.H., Jung, Y.M., Kim, S.B., (2005) Vib. Spectrosc., 37, pp. 33-38; Iliev, M.N., Hadjiev, V.G., Litvinchunk, A.P., (2013) Vib. Spectrosc., 64, pp. 148-152; Ma, H.L., Yang, J.Y., Dai, Y., Zhang, Y.B., Lu, B., Ma, G.H., (2007) Appl. Surf. Sci., 253, pp. 7497-7500; Rajender, G., Giri, P.K., (2016) J. Alloys Compd., 676, pp. 591-600; Iwasaki, M., Hara, M., Ito, S., (1998) J. Mater. Sci. Lett., 17, pp. 1769-1771; Bei, D., Marszalek, J., Youan, B.B.C., (2009) AAPS PharmSciTech., 10 (3), pp. 1040-1047; Wang, G., (2007) J. Mol. Catal. A: Chem. Ref. Data, 274, pp. 185-191; Thommes, M., Kaneko, K., Neimark, K.V., Oliver, J.P., Rodriguez-Reinoso, F., Roquerol, J., Sing, K.S.W., (2015) Pure Appl. Chem., 87 (9-10), pp. 1051-1069; Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem., 32, pp. 33-177; Golobostanfard, M.R., Abdizadeh, H., (2013) Physica B., 413, pp. 40-46; Selishchev, D., Kozlov, D., (2014) Molecules., 19, pp. 21424-21441; Raj, K.A.J., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., (2010) Indian J. Chem., 49 A, pp. 9-17; Rengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., (2009) J. Photochem. Photobiol., A., 205, pp. 109-115; Ho, W., Yu, J.C., Lee, S., (2006) J. Solid State Chem., 179, pp. 1171-1176spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem