Mostrar el registro sencillo del ítem

dc.creatorMunarriz J., Velez E., Casado M.A., Polo V.spa
dc.date.accessioned2018-04-13T16:35:04Z
dc.date.available2018-04-13T16:35:04Z
dc.date.created2018
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/4571
dc.description.abstractAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.eng
dc.language.isoeng
dc.publisherRoyal Society of Chemistryspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241118&doi=10.1039%2fc7cp07453k&partnerID=40&md5=435348b35bb1efcbe6b3face1e11fe22spa
dc.sourceScopusspa
dc.titleUnderstanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X groupspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationDepartamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spainspa
dc.identifier.doi10.1039/c7cp07453k
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.eng
dc.creator.affiliationMunarriz, J., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Velez, E., Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Casado, M.A., Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spain; Polo, V., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spainspa
dc.relation.ispartofesPhysical Chemistry Chemical Physicsspa
dc.relation.referencesBraun, T., (2005) Angew. Chem., Int. Ed., 44, pp. 5012-5014; Van Der Vlugt, J.I., (2010) Chem. Soc. Rev., 39, pp. 2302-2322; Klinkenberg, J.L., Hartwig, J.F., (2011) Angew. Chem., Int. Ed., 50, pp. 86-95; Kim, J., Kim, H.J., Chang, S., (2013) Eur. J. Org. Chem., pp. 3201-3213; Hillhouse, G.L., Bercaw, J.E., (1984) J. Am. Chem. Soc., 106, pp. 5472-5478; Casalnuovo, A.L., Calabrese, J.C., Milstein, D., (1987) Inorg. Chem., 26, pp. 971-973; Nakajima, Y., Kameo, H., Suzuki, H., (2006) Angew. Chem., Int. Ed., 45, pp. 950-952; Mena, I., Casado, M.A., García-Orduña, P., Polo, V., Lahoz, F.J., Fazal, A., Oro, L.A., (2011) Angew. Chem., Int. Ed., 50, pp. 11735-11738; Velez, E., Betoré, M.P., Casado, M.A., Polo, V., (2015) Organometallics, 34, pp. 3959-3966; Álvarez, M., Álvarez, E., Fructos, M.R., Urbano, J., Pérez, P.J., (2016) Dalton Trans., 45, pp. 14628-14633; Margulieux, G.W., Bezdek, M.J., Turner, Z.R., Chirik, P.J., (2017) J. Am. Chem. Soc., 139, pp. 6110-6113; Khaskin, E., Iron, M.A., Shimon, L.J.W., Zhang, J., Milstein, D., (2010) J. Am. Chem. Soc., 132, pp. 8542-8543; Chang, Y.H., Nakajima, Y., Tanaka, H., Yoshizawa, K., Ozawa, F., (2013) J. Am. Chem. Soc., 135, pp. 11791-11794; Taguchi, H.O., Sasaki, D., Takeuchi, K., Tsujimoto, S., Matsuo, T., Tanaka, H., Yoshizawa, K., Ozawa, F., (2016) Organometallics, 35, pp. 1526-1533; Gutsulyak, D.V., Piers, W.E., Borau-Garcia, J., Parvez, M., (2013) J. Am. Chem. Soc., 135, pp. 11776-11779; Brown, R.M., Garcia, J.B., Valjus, J., Roberts, C.J., Tuononen, H.M., Parvez, M., Roesler, R., (2015) Angew. Chem., Int. Ed., 54, pp. 6274-6277; Kim, Y., Park, S., (2016) C. R. Chim., 19, pp. 614-629; Cámpora, J., Palma, P., Del Río, D., Conejo, M.M., Alvarez, E., (2004) Organometallics, 23, pp. 5653-5655; Fox, D.J., Bergman, R.G., (2003) J. Am. Chem. Soc., 125, pp. 8984-8985; Kaplan, A.W., Ritter, J.C.M., Bergman, R.G., (1998) J. Am. Chem. Soc., 120, pp. 6828-6829; Conner, D., Jayaprakash, K.N., Cundari, T.R., Gunnoe, T.B., (2004) Organometallics, 23, pp. 2724-2733; Holland, A.W., Bergman, R.G., (2002) J. Am. Chem. Soc., 124, pp. 14684-14695; Jayaprakash, K.N., Conner, D., Gunnoe, T.B., (2001) Organometallics, 20, pp. 5254-5256; Zhao, J., Goldman, A.S., Hartwig, J.F., (2005) Science, 307, pp. 1080-1082; Morgan, E., MacLean, D.F., McDonald, R., Turculet, L., (2009) J. Am. Chem. Soc., 131, pp. 14234-14236; Uhe, A., Hölscher, M., Leitner, W., (2013) Chem.-Eur. J., 19, pp. 1020-1027; Collman, J.P., (1968) Acc. Chem. Res., 1, pp. 136-143; Labinger, J.A., (2015) Organometallics, 34, pp. 4784-4795; Low, J.J., Goddard, W.A., (1986) J. Am. Chem. Soc., 108, pp. 6115-6128; Saillard, J., Hoffmann, R., (1984) J. Am. Chem. Soc., 106, pp. 2006-2026; Koga, N., Morokuma, K., (1990) J. Phys. Chem., 94, pp. 5454-5462; Crabtree, R.H., Quirk, J.M., (1980) J. Organomet. Chem., 199, pp. 99-106; Su, M.D., Chu, S.Y., (1998) J. Phys. Chem. A, 102, pp. 10159-10166; Su, M.D., Chu, S.Y., (1998) Inorg. Chem., 37, pp. 3400-3406; Fazaeli, R., Ariafard, A., Jamshidi, S., Tabatabaie, E.S., Pishro, K.A., (2007) J. Organomet. Chem., 692, pp. 3984-3993; Hartwig, J.F., (2007) Inorg. Chem., 46, pp. 1936-1947; Ariafard, A., Yates, B.F., (2009) J. Organomet. Chem., 694, pp. 2075-2084; Yamashita, M., Vicario, J.V.C., Hartwig, J.F., (2003) J. Am. Chem. Soc., 125, pp. 16347-16360; Krogh-Jespersen, K., Goldman, A.S., (1999) Transition State Modeling for Catalysis, pp. 151-162. , ed. D. G. Truhlar and K. Morokuma, American Chemical Society, Washington DC; Su, M.D., Chu, S.Y., (1997) J. Am. Chem. Soc., 119, pp. 10178-10185; Macgregor, S.A., (2001) Organometallics, 20, pp. 1860-1874; Diggle, R.A., Macgregor, S.A., Whittlesey, M.K., (2004) Organometallics, 23, pp. 1857-1865; Cundari, T.R., (1994) J. Am. Chem. Soc., 116, pp. 340-347; Wang, D.Y., Choliy, Y., Haibach, M.C., Hartwig, J.F., Krogh-Jespersen, K., Goldman, A.S., (2016) J. Am. Chem. Soc., 138, pp. 149-163; Schultz, M., Milstein, D., (1993) J. Chem. Soc., Chem. Commun., pp. 318-319; Knizia, G., Klein, J.E.M.N., (2015) Angew. Chem., Int. Ed., 54, pp. 5518-5522; Andres, J., Berski, S., Silvi, B., (2016) Chem. Commun., 52, pp. 8183-8195; Silvi, B., Savin, A., (1994) Nature, 371, pp. 683-686; Krokidis, X., Noury, S., Silvi, B., (1997) J. Phys. Chem. A, 101, pp. 7277-7282; Polo, V., Andres, J., Berski, S., Domingo, L.R., Silvi, B., (2008) J. Phys. Chem. A, 112, pp. 7128-7136; Gonzalez-Navarrete, P., Andres, J., Berski, S., (2012) J. Phys. Chem. Lett., 3, pp. 2500-2505; Nizovtsev, A.S., (2013) J. Comput. Chem., 34, pp. 1917-1924; Viciano, I., Gonzalez-Navarrete, P., Andres, J., Marti, S., (2015) J. Chem. Theory Comput., 11, pp. 1470-1480; Phipps, M.J.S., Fox, T., Tautermann, C.S., Skylaris, C.K., (2015) Chem. Soc. Rev., 44, pp. 3177-3211; Kitaura, K., Morokuma, K., (1976) Int. J. Quantum Chem., 10, pp. 325-331; Blanco, M.A., Pendas, A.M., Francisco, E., (2005) J. Chem. Theory Comput., 1, pp. 1096-1109; Maxwell, P., Pendás, A.M., Popelier, P.L.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 20986-21000; Tiana, D., Francisco, E., Blanco, M.A., Macchi, P., Sironi, A., Pendas, A.M., (2010) J. Chem. Theory Comput., 6, pp. 1064-1074; Cukrowski, I., De Lange, J.H., Mitoraj, M., (2014) Chem.-Eur. J., 20, pp. 1-13; Guevara-Vela, J.M., Chavez-Calvillo, R., Garcia-Revilla, J., Hernandez-Trujillo, J., Christiansen, O., Francisco, E., Pendas, A.M., Rocha-Rinza, T., (2013) Chem.-Eur. J., 19, pp. 14304-14315; Ferro-Costas, D., Mosquera, R.A., (2015) Phys. Chem. Chem. Phys., 17, pp. 7424-7434; Pendas, A.M., Blanco, M.A., Franco, E., (2009) J. Comput. Chem., 30, pp. 98-109; Mitoraj, M.P., Zhu, H., Michalak, A., Ziegler, T., (2009) Int. J. Quantum Chem., 109, pp. 3379-3386; Frenking, G., Sola, M., Vyboishchikov, S.F., (2005) J. Organomet. Chem., 680, pp. 6178-6204; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford CT; Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 1372-1377; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Johnson, E.R., Becke, A.D., (2005) J. Chem. Phys., 123, p. 024101; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Noury, S., Krokidis, X., Fuster, F., Silvi, B., (1999) Comput. Chem., 23, p. 597; Keith, T.A., (2017) AIMAll (Version 17. 01.25), , TK Gristmill Software, Overland Park KS, USA; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612; Goddard, T.D., Huang, C.C., Ferrin, T.E., (2007) J. Struct. Biol., 157, pp. 281-287spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem