Mostrar el registro sencillo del ítem

dc.creatorOspina D.A., Cisternas E., Duque C.A., Correa J.D.spa
dc.date.accessioned2018-04-13T16:35:33Z
dc.date.available2018-04-13T16:35:33Z
dc.date.created2018
dc.identifier.issn396028
dc.identifier.urihttp://hdl.handle.net/11407/4577
dc.description.abstractBy first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials. © 2017 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85035030621&doi=10.1016%2fj.susc.2017.11.015&partnerID=40&md5=8f5a9727f0aba12a8a88eaa5e6a284dcspa
dc.sourceScopusspa
dc.titleElectronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical studyspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco, Chile; Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Casilla 54 D, Temuco, Chile; Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.identifier.doi10.1016/j.susc.2017.11.015
dc.subject.keywordBlack-phosphorene; Boron nitride; Heterostructures; STMeng
dc.subject.keywordBoron nitride; Calculations; Electronic properties; Electronic structure; Heterojunctions; Monolayers; Nitrides; Scanning tunneling microscopy; Vacancies; Van der Waals forces; Black-phosphorene; Experimental characterization; First-principles calculation; Hexagonal boron nitride; Novel materials; Single vacancies; Theoretical study; Van Der Waals interactions; Defectseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractBy first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials. © 2017 Elsevier B.V.eng
dc.creator.affiliationOspina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Cisternas, E., Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco, Chile, Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Casilla 54 D, Temuco, Chile; Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiaspa
dc.relation.ispartofesSurface Sciencespa
dc.relation.referencesGeim, A.K., Novoselov, K.S., The rise of graphene (2007) Nat. Mater., 6 (3), pp. 183-191; Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides (2012) Nat. Nanotechnol., 7 (11), pp. 699-712; Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Brink, J.V.D., Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations (2007) Phys. Rev. B, 76 (7), p. 073103; Grazianetti, C., Cinquanta, E., Molle, A., Two-dimensional silicon: the advent of silicene (2016) 2D Materials, 3 (1), p. 012001; Zhu, F.-F., Chen, W.-J., Xu, Y., Gao, C.-L., Guan, D.-D., Liu, C.-H., Qian, D., Jia, J.-F., Epitaxial growth of two-dimensional stanene (2015) Nat. Mater., 14 (10), pp. 1020-1025; Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2d semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041; Geim, A.K., Grigorieva, I.V., Van der waals heterostructures (2013) Nature, 499 (7459), pp. 419-425; Jain, N., Bansal, T., Durcan, C.A., Xu, Y., Yu, B., Monolayer graphene/hexagonal boron nitride heterostructure (2013) Carbon, 54, pp. 396-402; Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides (2014) ACS Nano, 8 (2), pp. 1102-1120; Niu, T., Li, A., From two-dimensional materials to heterostructures (2015) Progr. Surf. Sci., 90 (1), pp. 21-45; Miró, P., Audiffred, M., Heine, T., An atlas of two-dimensional materials (2014) Chem. Soc. Rev., 43 (18), pp. 6537-6554; Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D., Silicene field-effect transistors operating at room temperature (2015) Nat. Nanotechnol., 10 (3), pp. 227-231; Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Shepard, K., Boron nitride substrates for high-quality graphene electronics (2010) Nat. Nanotechnol., 5 (10), pp. 722-726; Järvinen, P., Hämäläinen, S.K., Banerjee, K., Häkkinen, P., Ijäs, M., Harju, A., Liljeroth, P., Molecular self-assembly on graphene on SiO2 and h-BN substrates (2013) Nano letters, 13 (7), pp. 3199-3204; Correa, J., Cisternas, E., Ab initio calculations on twisted graphene/hBN: electronic structure and STM image simulation (2016) Solid State Commun., 241, pp. 1-6; Kozawa, D., Carvalho, A., Verzhbitskiy, I., Giustiniano, F., Miyauchi, Y., Mouri, S., Neto, A.C., Eda, G., Evidence for fast interlayer energy transfer in mose2/WS2 heterostructures (2016) Nano Lett., 16 (7), pp. 4087-4093; Cai, Y., Zhang, G., Zhang, Y.-W., Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures (2015) J. Phys. Chem. C, 119 (24), pp. 13929-13936; Sun, J., Lee, H.-W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries (2015) Nature nanotechnology, 10 (11), pp. 980-985; Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nat. Nanotechnol., 9 (5), pp. 372-377; Wang, C., Sun, J., Zhang, B., Zhang, J., Tao, X., An ab initio investigation of phosphorene/hexagonal boron nitride heterostructures with defects for high performance photovoltaic applications (2017) Appl. Surf. Sci.; Hu, W., Yang, J., Defects in phosphorene (2015) J. Phys. Chem. C, 119 (35), pp. 20474-20480; Sahin, H., Sivek, J., Li, S., Partoens, B., Peeters, F.M., Stone-wales defects in silicene: formation, stability, and reactivity of defect sites (2013) Phys. Rev. B, 88 (4), p. 045434; Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys., 14 (11), p. 2745; Klimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys., 22 (2), p. 022201; Tersoff, J., Hamann, D., Theory and application for the scanning tunneling microscope (1983) Phys. Rev. Lett., 50 (25), p. 1998; Horcas, I., Fernández, R., Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., Baro, A., Wsxm: a software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum., 78 (1), p. 013705; Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059; Padilha, J.E., Silva, A.J.R.D., Van der waals heterostructure of phosphorene and graphene: tuning the schottky barrier and doping by electrostatic gating (2015) Phys. Rev. Lett., 114 (6), p. 066803spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem