Mostrar el registro sencillo del ítem
Atrial rotor dynamics under complex fractional order diffusion
dc.creator | Ugarte J.P. | spa |
dc.creator | Tobón C. | spa |
dc.creator | Lopes A.M. | spa |
dc.creator | Tenreiro Machado J.A. | spa |
dc.date.accessioned | 2018-10-31T13:09:07Z | |
dc.date.available | 2018-10-31T13:09:07Z | |
dc.date.created | 2018 | |
dc.identifier.issn | 1664042X | |
dc.identifier.uri | http://hdl.handle.net/11407/4843 | |
dc.description | The mechanisms of atrial fibrillation (AF) are a challenging research topic. The rotor hypothesis states that the AF is sustained by a reentrant wave that propagates around an unexcited core. Cardiac tissue heterogeneities, both structural and cellular, play an important role during fibrillatory dynamics, so that the ionic characteristics of the currents, their spatial distribution and their structural heterogeneity determine the meandering of the rotor. Several studies about rotor dynamics implement the standard diffusion equation. However, this mathematical scheme carries some limitations. It assumes the myocardium as a continuous medium, ignoring, therefore, its discrete and heterogeneous aspects. A computational model integrating both, electrical and structural properties could complement experimental and clinical results. A new mathematical model of the action potential propagation, based on complex fractional order derivatives is presented. The complex derivative order appears of considering the myocardium as discrete-scale invariant fractal. The main aim is to study the role of a myocardial, with fractal characteristics, on atrial fibrillatory dynamics. For this purpose, the degree of structural heterogeneity is described through derivatives of complex order ? = ? + j?. A set of variations for ? is tested. The real part ? takes values ranging from 1.1 to 2 and the imaginary part ? from 0 to 0.28. Under this scheme, the standard diffusion is recovered when ? = 2 and ? = 0. The effect of ? on the action potential propagation over an atrial strand is investigated. Rotors are generated in a 2D model of atrial tissue under electrical remodeling due to chronic AF. The results show that the degree of structural heterogeneity, given by ?, modulates the electrophysiological properties and the dynamics of rotor-type reentrant mechanisms. The spatial stability of the rotor and the area of its unexcited core are modulated. As the real part decreases and the imaginary part increases, simulating a higher structural heterogeneity, the vulnerable window to reentrant is increased, as the total meandering of the rotor tip. This in silico study suggests that structural heterogeneity, described by means of complex order derivatives, modulates the stability of rotors and that a wide range of rotor dynamics can be generated. © 2018 Ugarte, Tobón, Lopes and Machado. | spa |
dc.language.iso | eng | |
dc.publisher | Frontiers Media S.A. | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050632032&doi=10.3389%2ffphys.2018.00975&partnerID=40&md5=a1ae78aea06069adbb7ea86ad7311519 | spa |
dc.source | Scopus | spa |
dc.subject | Atrial fibrillation | spa |
dc.subject | Complex order diffusion | spa |
dc.subject | Electrical remodeling | spa |
dc.subject | Rotor dynamics | spa |
dc.subject | Structural heterogeneity | spa |
dc.title | Atrial rotor dynamics under complex fractional order diffusion | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.contributor.affiliation | Ugarte, J.P., Universidad de San Buenaventura;Tobón, C., Universidad de Medellín;Lopes, A.M., University of Porto;Tenreiro Machado, J.A., Institute of Engineering; Polytechnic of Porto | spa |
dc.identifier.doi | 10.3389/fphys.2018.00975 | |
dc.relation.citationvolume | 9 | |
dc.relation.citationissue | JUL | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.relation.ispartofes | Frontiers in Physiology | spa |
dc.relation.references | Alonso, S., Bär, M., Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue (2013) Phys. Rev. Lett, 110, pp. 1-5;Anné, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) J. Mol. Cell. Cardiol, 43, pp. 148-158;Arora, R., Verheule, S., Scott, L., Navarrete, A., Katari, V., Wilson, E., Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping (2003) Circulation, 107, pp. 1816-1821;Atienza, F., Almendral, J., Ormaetxe, J.M., Moya, Á., Martínez-Alday, J.D., Hernández-Madrid, A., Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial (2014) J. Am. Coll. Cardiol, 64, pp. 2455-2467;Badie, N., Bursac, N., Novel micropatterned cardiac cell cultures with realistic ventricular microstructure (2009) Biophys. J, 96, pp. 3873-3885;Berenfeld, O., Simulation of High-Resolution QRS Complex Using a Ventricular Model With a Fractal Conduction System Effects of Ischemia on High-Frequency QRS Potentials (1991) Circ. Res, 68, pp. 1751-1761;Berenfeld, O., The major role of IK1 in mechanisms of rotor drift in the atria: a computational study (2016) Clin. Med. Insights Cardiol, 10, pp. 71-79;Bizzarri, M., Giuliani, A., Cucina, A., D'Anselmi, F., Soto, A.M., Sonnenschein, C., Fractal analysis in a systems biology approach to cancer (2011) Semi. Cancer Biol, 21, pp. 175-182;Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res, 44, pp. 121-131;Boutjdir, M., Le Heuzey, J.Y., Lavergne, T., Chauvaud, S., Guize, L., Carpentier, A., Inhomogeneity of Cellular Refractoriness in Human Atrium: Factor of Arrhythmia? L'hétérogénéité des périodes réfractaires cellulaires de l'oreillette humaine: un facteur d'arythmie? (1986) Pacing Clin. Electrophysiol, 9, pp. 1095-1100;Boyett, M.R., Honjo, H., Yamamoto, M., Nikmaram, M.R., Niwa, R., Kodama, I., Downward gradient in action potential duration along conduction path in and around the sinoatrial node (1999) Am. J. Physiol. Heart Circ. Physiol, 276 (2), pp. H686-H698;Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12, pp. 716-722;Brown, T.R., Krogh-Madsen, T., Christini, D.J., Computational approaches to understanding the role of fibroblast-Myocyte interactions in cardiac arrhythmogenesis (2015) BioMed Res. Int, 2015;Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience (2016) Heart Rhythm, 13, pp. 636-641;Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization (2014) J. R. Soc. Inter, 11;Calcagni, G., Complex dimensions and their observability (2017) Phys. Rev. D, 96, pp. 1-7;Captur, G., Karperien, A.L., Hughes, A.D., Francis, D.P., Moon, J.C., The fractal heart-embracing mathematics in the cardiology clinic (2016) Nat. Rev. Cardiol, 14, pp. 56-64;Captur, G., Karperien, A.L., Li, C., Zemrak, F., Tobon-Gomez, C., Gao, X., Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation (2015) J. Cardiovasc. Magnet. Reson, 17, pp. 1-10;Cherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol, 254, pp. 674-690;Copley, S.J., Giannarou, S., Schmid, V., Hansell, D., Wells, A., Yang, G.-Z., Effect of aging on lung structure in vivo: assessment with densitometric and fractal analysis of high-resolution computed tomography data (2012) J. Thorac. Imaging, 27, pp. 366-371;Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am. J. Physiol, 275 (1), pp. H301-H321;Cross, S.S., Fractals in pathology (1997) J. Pathol, 182, pp. 1-8;Dickinson, R.B., Guido, S., Tranquillo, R.T., Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels (1994) Anna. Biomed. Eng, 22, pp. 342-356;Dobrev, D., Graf, E., Wettwer, E., Himmel, H., Hála, O., Doerfel, C., Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current I(K, ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K, ACh) and muscarinic receptor-mediated shortening of action potentials (2001) Circulation, 104, pp. 2551-2557;Fuseler, J.W., Millette, C.F., Davis, J.M., Carver, W., Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch (2007) Microsc. Microanal, 13, pp. 133-143;Goldberger, A.L., Rigney, D.R., West, B.J., Chaos and fractals in human physiology (1990) Sci. Pic, 262, pp. 42-49;Goldberger, A.L., West, B.J., Fractals in physiology and medicine (1987) Yale J. Biol. Med, 60, pp. 421-435;Graux, P., Carlioz, R., Rivat, P., Bera, J., Guyomar, Y., Dutoit, A., Wavelength and atrial vulnerability: an endocavitary approach in humans (1998) Pacing Clin. Electrophysiol, 21, pp. 202-208;Guillem, M.S., Climent, A.M., Rodrigo, M., Fernandez-Aviles, F., Atienza, F., Berenfeld, O., Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications (2016) Cardiovasc. Res, 109, pp. 480-492;Haïssaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N. Engl. J. Med, 339, pp. 659-666;Hansen, B.J., Zhao, J., Fedorov, V.V., Fibrosis and atrial fibrillation: computerized and optical mapping: a view into the human atria at submillimeter resolution (2017) JACC Clin. Electrophysiol, 3, pp. 531-546;Hanson, B., Suton, P., Elameri, N., Gray, M., Critchley, H., Gill, J.S., Interacton of activation-repolarization coupling and restitution properties in humans (2009) Circ. Arrhyth. Electrophysiol, 2, pp. 162-170;Hartley, T.T., Tomhartleyaolcom, E., Lorenzo, C.F., Adams, J.L., 'Conjugated-Order differintegrals,' (2016) ASME, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 6, pp. 1597-1602. , (California, CA);Hiroshima, Y., Shuto, K., Yamazaki, K., Kawaguchi, D., Yamada, M., Kikuchi, Y., Fractal dimension of tc-99m dtpa gsa estimates pathologic liver injury due to chemotherapy in liver cancer patients (2016) Ann. Surg. Oncol, 23, pp. 4384-4391;Ionescu, C., Lopes, A., Copot, D., Machado, J.A., Bates, J.H., The role of fractional calculus in modeling biological phenomena: a review (2017) Communic. Nonlinear Sci. Numerical Simulat, 51, pp. 141-159;Jalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation (2002) Cardiovasc. Res, 54, pp. 204-216;Jalife, J., Kaur, K., Atrial remodeling, fibrosis, and atrial fibrillation (2014) Trends Cardiovasc. Med, 25, pp. 475-484;Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J, 20, pp. 888-895;Keener, J., Sneyd, J., (1998) Mathematical Physiology, , New York, NY: Springer-Verlag New York, Inc;Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C., Scale invariance in natural and artificial collective systems: a review (2017) J. R. Soc. Inter, 14;Kharche, S.R., Biktasheva, I.V., Seemann, G., Zhang, H., Biktashev, V.N., A computer simulation study of anatomy induced drift of spiral waves in the human atrium (2015) BioMed Res. Int, 2015, pp. 24-26;Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18, pp. 1609-1678;Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ. Res, 90, pp. 73e-87;Lalani, G.G., Schricker, A., Gibson, M., Rostamian, A., Krummen, D.E., Narayan, S.M., Atrial conduction slows immediately before the onset of human atrial fibrillation a Bi-Atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59, pp. 595-606;Lennon, F.E., Cianci, G.C., Kanteti, R., Riehm, J.J., Arif, Q., Poroyko, V.A., Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma (2016) Sci. Rep, 6, p. 24578;Lesh, M.D., Kalman, J.M., Olgin, J.E., Ellis, W.S., The role of atrial anatomy in clinical atrial arrhythmias (1996) J. Electrocardiol, 29, pp. 101-113;Lim, H.S., Hocini, M., Dubois, R., Denis, A., Derval, N., Zellerhoff, S., Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation (2017) J. Am. Coll. Cardiol, 69, pp. 1257-1269;Machado, J.A., Kiryakova, V., The Chronicles of Fractional Calculus (2017) Fract. Calc. Appl. Anal, 20, pp. 307-336;Machado, J.A.T., Optimal Controllers with Complex Order Derivatives (2013) J. Optim. Theory Applic, 156, pp. 2-12;Mandelbrot, B., (1982) The Fractal Geometry of Nature, , Florence: Einaudi paperbacks 1997;Marchuk, G.I., On the construction and comparison of difference schemes (1968) Aplikace Matematiky, 13, pp. 103-132;Markides, V., Schilling, R.J., Ho, S.Y., Chow, A.W., Davies, D.W., Peters, N.S., Characterization of left atrial activation in the intact human heart (2003) Circulation, 107, pp. 733-739;Miller, J.M., Kalra, V., Das, M.K., Jain, R., Garlie, J.B., Brewster, J.A., Clinical benefit of ablating localized sources for human atrial fibrillation: the Indiana University FIRM registry (2017) J. Am. Coll. Cardiol, 69, pp. 1247-1256;Morillo, C.A., Klein, G., Jones, D., Guiraudon, C., Chronic rapid atrial pacing: Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation (1995) Circulation, 91, pp. 1588-1595;Müller, A., Marschner, C., Kristensen, A., Wiinberg, B., Sato, A., Rubio, J., Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics (2017) Veter. Radiol. Ultras, 58, pp. 653-663;Narayan, S.M., Krummen, D.E., Clopton, P., Shivkumar, K., Miller, J.M., Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM Trial (Conventional ablation for AF with or without focal impulse and rotor modulation) (2013) J. Am. Coll. Cardiol, 62, pp. 138-147;Narayan, S.M., Patel, J., Mulpuru, S., Krummen, D.E., Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm sith elimination on follow-up A video case study (2012) Heart Rhythm, 9, pp. 1436-1439;Narayan, S.M., Vishwanathan, M.N., Kowalewski, C.A., Baykaner, T., Rodrigo, M., Zaman, J.A., The continuous challenge of AF ablation: from foci to rotational activity (2017) Rev. Portug. Cardiol, 36, pp. 9-17;Nattel, S., Harada, M., (2014) Atrial remodeling and atrial fibrillation: recent advances and translational perspectives, , J. Am. Coll. Cardiol;Nigmatullin, R.R., Arbuzov, A.A., Salehli, F., Giz, A., Bayrak, I., Catalgil-Giz, H., The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions (2007) Phys. B Condensed Matter, 388, pp. 418-434;Nigmatullin, R.R., Baleanu, D., New relationships connecting a class of fractal objects and fractional integrals in space (2013) Fract. Calc. Appl. Anal, 16, pp. 911-936;Nigmatullin, R.R., Budnikov, H.C., Sidelnikov, A.V., Mesoscopic theory of percolation currents associated with quantitative description of VAGs: confirmation on real data (2018) Chaos Solit. Fract, 106, pp. 171-183;Nigmatullin, R.R., Le Mehaute, A., Is there geometrical/physical meaning of the fractional integral with complex exponent? (2005) J. Non Crystall. Solids, 351, pp. 2888-2899;Nigmatullin, R.R., Zhang, W., Gubaidullin, I., Accurate relationships between fractals and fractional integrals: new approaches and evaluations (2017) Frac. Calc. Appl. Anal, 20, pp. 1263-1280;Nogueira, I.R., Alves, S.G., Ferreira, S.C., Scaling laws in the diffusion limited aggregation of persistent random walkers (2011) Phys. A Stat. Mech. Applic, 390, pp. 4087-4094;Oldham, K., Spanier, J., (2006) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, , Mineola, NY: Dover books on mathematics, Dover Publications;Popovic, N., Radunovic, M., Badnjar, J., Popovic, T., Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes (2018) Microvasc. Res, 118, pp. 36-43;Pozrikidis, C., (2016) The Fractional Laplacian, , Boca Raton, FL: CRC Press;Shaw, R.M., Rudy, Y., Cardiac muscle is not a uniform syncytium (2010) Biophys. J, 98, pp. 3102-3103;Sornette, D., Discrete-scale invariance and complex dimensions (1998) Phys. Report, 297, pp. 239-270;Spach, M.S., Heidlage, J.F., Dolber, P.C., Barr, R.C., Extracellular discontinuities in cardiac muscle: evidence for capillary effects on the action potential foot (1998) Circ. Res, 83, pp. 1144-1164;Stankovic, M., Pantic, I., De Luka, S., Puskas, N., Zaletel, I., Milutinovic-Smiljanic, S., Quantification of structural changes in acute inflammation by fractal dimension, angular second moment and correlation (2016) J. Micros, 261, pp. 277-284;Steinberg, J.S., Shah, Y., Bhatt, A., Sichrovsky, T., Arshad, A., Hansinger, E., Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up (2017) Heart Rhythm, 14, pp. 192-197;Stinstra, J., Macleod, R., Henriquez, C., Incorporating Histology into a 3D Microscopic Computer Model of Myocardium to Study Propagation at a Cellular Level (2010) Ann. Biomed. Eng, 38, pp. 1399-1414;Strang, G., On the construction and comparison of difference schemes (1968) J. Numerical Anal, 5, pp. 506-517;Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y., A new collection of real world applications of fractional calculus in science and engineering (2018) Commun. Nonlinear Sci. Num. Simul, 64, pp. 213-231;Tobón, C., Orozco-Duque, A., Ugarte, J.P., Becerra, M., Saiz, J., 'Chapter 08, Complexity of atrial fibrillation electrograms through nonlinear signal analysis: in silico approach,' (2017) Interpreting Cardiac Electrograms-From Skin to Endocardium, pp. 137-168. , ed. K. A. Michael (Rijeka: InTech);Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach (2014) Front. Physiol, 5, p. 435;Ugarte, J.P., Tobón, C., Orozco-Duque, A., Andrade-Caicedo, H., Generation of fibrillatory dynamics in cardiac tissue: fractional diffusion as arrhythmogenic mechanism modelling tool (2017) Appl. Math. Sci, 11, pp. 637-650;Van Wagoner, D.R., Pond, A.L., McCarthy, P.M., Trimmer, J.S., Nerbonne, J.M., Outward k+ current densities and kv1.5 expression are reduced in chronic human atrial fibrillation (1997) Circ. Res, 80, pp. 772-781;Vasquez, C., Mohandas, P., Louie, K., Benamer, N., Bapat, A., Morley, G., Enhanced fibroblast-myocyte interactions in response to cardiac injury (2010) Circ. Res, 107, pp. 1011-1020;Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H., Hassaguerre, M., Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data (2016) Heart Rhythm, 13, pp. 1536-1543;Wedman, P., Aladhami, A., Beste, M., Edwards, M.K., Chumanevich, A., Fuseler, J.W., A new image analysis method based on morphometric and fractal parameters for rapid evaluation of in situ mammalian mast cell status (2015) Microsc. Microanal, 21, pp. 1573-1581;Wijffels, M.C., Kirchhof, C.C., Dorland, R., Allessie, M.A., Atrial fibrillation begets atrial fibrillation (1995) Circulation, 92, pp. 1954-1968;Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol, 3, p. 487;Workman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc. Res, 52, pp. 226-235;Xia, Y., Hertervig, E., Kongstad, O., Ljungström, E., Pyotr, P., Holm, M., Deterioration of interatrial conduction in patients with paroxysmal atrial fibrillation: electroanatomic mapping of the right atrium and coronary sinus (2004) Heart Rhythm, 1, pp. 548-553;Zaman, J.A., Peters, N.S., The rotor revolution: conduction at the eye of the storm in atrial fibrillation (2014) Circ. Arrhythm. Electrophysiol, 7, pp. 1230-1236;Zamir, M., On fractal properties of arterial trees (1999) J. Theor. Biol, 197, pp. 517-526;Zehani, S., Ouahabi, A., Oussalah, M., Mimi, M., Taleb-Ahmed, A., 'New and robust method for trabecular bone texture based on fractal dimension,' (2016) IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 992-997. , (New York, NY);Zenin, O.K., Kizilova, N.N., Filippova, E.N., Studies on the structure of human coronary vasculature (2007) Biophysics, 52, pp. 499-503;Zhang, Y.-D., Zhang, Y., Phillips, P., Dong, Z., Wang, S., Synthetic minority oversampling technique and fractal dimension for identifying multiple sclerosis (2017) Fractals, 25;Zhao, J., Kharche, S.R., Hansen, B.J., Csepe, T.A., Wang, Y., Stiles, M.K., Optimization of catheter ablation of atrial fibrillation: insights gained from clinically-derived computer models (2015) Int. J. Mol. Sci, 16, pp. 10834-10854;Zouein, F.A., Kurdi, M., Booz, G.W., Fuseler, J.W., Applying fractal dimension and image analysis to quantify fibrotic collagen deposition and organization in the normal and hypertensive heart (2014) Microsc. Microanal, 20, pp. 1134-1144 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]