dc.relation.references | Alonso-Canas, I., Chuvieco, E., Global burned area mapping from ENVISAT-MERIS and MODIS active fire data (2015) Remote Sensing of Environment, 163, pp. 140-152. , https://doi.org/10.1016/j.rse.2015.03.011;Anaya, J.A., Chuvieco, E., (2010) Caracterización De La Eficiencia Del Quemado a Partir Del análisis De Series De Tiempo Del índice De vegetación EVI, , Paper presented at the XVI Simposio internacional SELPER, Guanajuato, México;Anaya, J.A., Chuvieco, E., Accuracy assessment of burned area products in the Orinoco basin (2012) Photogrammetric Engineering and Remote Sensing, 78 (1), pp. 53-60. , https://doi.org/10.14358/PERS.78.1.53;Armenteras, D., Gibbes, C., Anaya, J.A., Dávalos, L.M., Integrating remotely sensed fires for predicting deforestation for REDD+ (2017) Ecological Applications, 27 (4), pp. 1294-1304. , https://doi.org/10.1002/eap.1522;Bastarrika, A., Chuvieco, E., Martín, M.P., Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors (2011) Remote Sensing of Environment, 115 (4), pp. 1003-1012. , https://doi.org/10.1016/j.rse.2010.12.005;Congalton, R.G., Green, K., (2009) Assessing the Accuracy of Remotely Sensed Data, , 2nd ed.). Boca Raton, FL, USA: CRC Press;Chander, G., Markham, B.L., Helder, D.L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors (2009) Remote Sensing of Environment, 113 (5), pp. 893-903. , https://doi.org/10.1016/j.rse.2009.01.007;Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Giri, C., A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform (2017) ISPRS Journal of Photogrammetry and Remote Sensing, 131, pp. 104-120. , https://doi.org/10.1016/j.isprsjprs.2017.07.011;Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional Climate Projections (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change, , In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Ed.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA;Chuvieco, E., Martin, M.P., Palacios, A., Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination (2002) International Journal of Remote Sensing, 23, pp. 5103-5110. , https://doi.org/10.1080/01431160210153129;Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J.M., Tansey, K., A new global burned area product for climate assessment of fire impacts (2016) Global Ecology and Biogeography, 25 (5), pp. 619-629. , https://doi.org/10.1111/geb.12440;Devisscher, T., Malhi, Y., Rojas Landívar, D., Oliveras, I., Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia (2015) Forest Ecology and Management, 360, pp. 273-286. , https://doi.org/10.1016/j.foreco.2015.10.033;Giglio, L., Loboda, T., Roy, D.P., Quayle, B., Justice, C.O., An active-fire based burned area mapping algorithm for the MODIS sensor (2009) Remote Sensing of Environment, 113 (2), pp. 408-420. , https://doi.org/10.1016/j.rse.2008.10.006;Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sensing of Environment, 202, pp. 18-27. , https://doi.org/10.1016/j.rse.2017.06.031;Key, C., Benson, N., Landscape Assessment (LA) Sampling and Analysis Method (2006) RMRS-GTR-164-CD, p. 51. , In U. F. S. G. T. Rep. (Ed.);Key, C.H., Remote sensing sensitivity to fire severity and fire recovery (2005) International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, , Universidad de Zaragoza, Spain;Libonati, R., Dacamara, C.C., Pereira, J.M.C., Peres, L.F., Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS (2010) Remote Sensing of Environment, 114 (4), pp. 831-843. , https://doi.org/10.1016/j.rse.2009.11.018;Liss, B., Howland, M.D., Levy, T.E., Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan (2017) Journal of Archaeological Science: Reports, 15, pp. 299-304. , https://doi.org/10.1016/j.jasrep.2017.08.013;Melchiori, A.E., Candido, P.D.A., Libonati, R., Morelli, F., Setzer, A., De Jesús, S.C., Garcia-Fonseca, L.M., Korting, T.S., Spectral indices and multi-temporal change image detection algorithms for burned area extraction in the Brazilian Cerrado (2015) Anais XVII Simpsio Brasileiro De Sensoramiento Remoto, , Joao Pessoa-PB, Brasil;Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., Sherlock, J.W., Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA (2009) Remote Sensing of Environment, 113 (3), pp. 645-656. , https://doi.org/10.1016/j.rse.2008.11.009;Miller, J.D., Thode, A.E., Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (DNBR) (2007) Remote Sensing of Environment, 109 (1), pp. 66-80. , https://doi.org/10.1016/j.rse.2006.12.006;Padilla, M., Stehman, S.V., Chuvieco, E., Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling (2014) Remote Sensing of Environment, 144, pp. 187-196. , https://doi.org/10.1016/j.rse.2014.01.008;Padilla, M., Stehman, S.V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Chuvieco, E., Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation (2015) Remote Sensing of Environment, 160, pp. 114-121. , https://doi.org/10.1016/j.rse.2015.01.005;Pereira, J.M.C., Remote sensing of burned areas in tropical savannas (2003) International Journal of Wildland Fire, 12 (4), pp. 259-270. , https://doi.org/10.1071/WF03028;Potter, C., Tan, P.-N., Steinbach, M., Klooster, S., Kumar, V., Myneni, R., Genovese, V., Major disturbance events in terrestrial ecosystems detected using global satellite data sets (2003) Global Change Biology, 9 (7), pp. 1005-1021. , https://doi.org/10.1046/j.1365-2486.2003.00648.x;Rodríguez-Montellano, A., Libonatti, R., Melchiori, A.E., Sensibilidad en la detección de áreas quemadas en tres ecosistemas vegetales de Bolivia, utilizando tres productos regionales (2015) Simpósio Brasileiro De Sensoramiento Remoto, João Pessoa, Brasil, , 25 a 29 de abril de 2015;Roy, D., Boschetti, L., O'Neal, K., (2006) MODIS Collection 5 Burned Area Product MCD45 User's Guide, p. 12. , USGS, University of Maryland;Roy, D.P., Boschetti, L., Southern Africa Validation of the MODIS, L3JRC and GlobCarbon Burned-Area Products (2009) IEEE Transactions on Geoscience and Remote Sensing, 47 (4), pp. 1-13. , https://doi.org/10.1109/TGRS.2008.2009000;Roy, D.P., Jin, Y., Lewis, P.E., Justice, C.O., Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data (2005) Remote Sensing of Environment, 97 (2), pp. 137-162. , https://doi.org/10.1016/j.rse.2005.04.007;Schroeder, W., Oliva, P., Giglio, L., Csiszar, I.A., The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment (2014) Remote Sensing of Environment, 143, pp. 85-96. , https://doi.org/10.1016/j.rse.2013.12.008;Sofía, M., Grau, H.R., Néstor Ignacio, G., Tobias, K., Matthias, B., Differences in production, carbon stocks and biodiversity outcomes of land tenure regimes in the Argentine Dry Chaco (2017) Environmental Research Letters, 12 (4). , https://doi.org/10.1088/1748-9326/aa625c;Tansey, K., Grégoire, J.-M., Pereira, J.M.C., Defourny, P., Leigh, R., Pekel, J.-F., Barros, A., Bontemps, S., 11-14 September 2007. L3JRC-A global, multi-year (2000-2007) burnt area product (1 km resolution and daily time steps) (2007) Remote Sensing and Photogrammetry Society Annual Conference 2007, , Newcastle upon Tyne, UK;Valencia, G.M., Anaya, J.A., Caro-Lopera, F.J., Implementation and evaluation of the landsat ecosystem disturbance adaptive processing systems (LEDAPS) model: A case study in the Colombian andes (2016) Revista De Teledeteccion, 46, pp. 83-101. , https://doi.org/10.4995/raet.2016.3582;Vermote, E.F., El Saleous, N.Z., Justice, C.O., Atmospheric correction of MODIS data in the visible to middle infrared: First results (2002) Remote Sensing of Environment, 83 (1-2), pp. 97-111. , https://doi.org/10.1016/S0034-4257(02)00089-5;Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sensing of Environment, 118, pp. 83-94. , https://doi.org/10.1016/j.rse.2011.10.028;Zhu, Z., Woodcock, C.E., Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change (2014) Remote Sensing of Environment, 152, pp. 217-234. , https://doi.org/10.1016/j.rse.2014.06.012 | spa |