REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of models of decision trees and K-means models in the characterization or diagnosis of some diseases [Análisis comparativo entre: «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso]

Thumbnail
Share this
Date
2018
Author
Sánchez Zuleta C.C.
Giraldo Marín L.M.
Piedrahita Escobar C.C.
Bonet I.
Lochmüller C.
Tabares Betancur M.S.
Peña A.

Citación

       
TY - GEN T1 - Evaluation of models of decision trees and K-means models in the characterization or diagnosis of some diseases [Análisis comparativo entre: «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso] AU - Sánchez Zuleta C.C. AU - Giraldo Marín L.M. AU - Piedrahita Escobar C.C. AU - Bonet I. AU - Lochmüller C. AU - Tabares Betancur M.S. AU - Peña A. Y1 - 2018 UR - http://hdl.handle.net/11407/4857 PB - Revista Espacios AB - The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques. © 2018. ER - @misc{11407_4857, author = {Sánchez Zuleta C.C. and Giraldo Marín L.M. and Piedrahita Escobar C.C. and Bonet I. and Lochmüller C. and Tabares Betancur M.S. and Peña A.}, title = {Evaluation of models of decision trees and K-means models in the characterization or diagnosis of some diseases [Análisis comparativo entre: «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso]}, year = {2018}, abstract = {The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques. © 2018.}, url = {http://hdl.handle.net/11407/4857} }RT Generic T1 Evaluation of models of decision trees and K-means models in the characterization or diagnosis of some diseases [Análisis comparativo entre: «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso] A1 Sánchez Zuleta C.C. A1 Giraldo Marín L.M. A1 Piedrahita Escobar C.C. A1 Bonet I. A1 Lochmüller C. A1 Tabares Betancur M.S. A1 Peña A. YR 2018 LK http://hdl.handle.net/11407/4857 PB Revista Espacios AB The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques. © 2018. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques. © 2018.
URI
http://hdl.handle.net/11407/4857
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com