dc.relation.references | Kates, R.W., Sustainability science (2001) Science, 292, pp. 641-642;Pielke, R.A., Jr., Hurricanes and global warming (2005) Bulletin of the American Meteorological Society, 86, pp. 1571-1575;Program, U.G.C.R., (2009) Global Climate Change Impacts in the United States, , Cambridge University Press;Knutson, T.R., Tropical cyclones and climate change (2010) Nature Geoscience, 3, p. 157;Blasing, T., Recent greenhouse gas concentrations (2016) ESS-DIVE (Environmental System Science Data Infrastructure for A Virtual Ecosystem), , Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States);(2005) Kyoto Protocol, , http://unfccc.int/kyoto_protocol/items/2830.php, U. N. F. C. C. Change;http://unfccc.int/paris_agreement/items/9485.php;(2015) Paris Agreement, , http://bigpicture.unfccc.int/#content-The-paris-agreemen, U. N. F. C. C. Change;Olivier, J., (2017) TRENDS in GLOBAL CO2 and TOTAL GREENHOUSE GAS EMISSIONS;Pridmore, A., (2003) Climate Change, Impacts, Future Scenarios Andthe Role of Transport;Springer, U., The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies (2003) Energy Economics, 25, pp. 527-551. , 2003/09/01/;Chapel, D.G., Recovery of CO2 from flue gases: Commercial trends (1999) Canadian Society of Chemical Engineers Annual Meeting;Zangeneh, F.T., Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism (2011) Journal of Natural Gas Chemistry, 20, pp. 219-231;Dave, N., CO2 capture by aqueous amines and aqueous ammonia-A Comparison (2009) Energy Procedia, 1, pp. 949-954;Schäffner, B., Organic carbonates as solvents in synthesis and catalysis (2010) Chemical Reviews, 110, pp. 4554-4581;Wen, L.-B., The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission (2010) Applied Energy, 87, pp. 115-121;Tundo, P., (2000) Dimethylcarbonate As A Green Reagent, , ed: ACS Publications;Pacheco, M.A., Marshall, C.L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive (1997) Energy &Fuels, 11, pp. 2-29;Santos, B.A., Review for the direct synthesis of dimethyl carbonate (2014) ChemBioEng Reviews, 1, pp. 214-229;Abanda, F., Mathematical modelling of embodied energy, greenhouse gases, waste, time-cost parameters of building projects: A review (2013) Building and Environment, 59, pp. 23-37;Mason, I., Mathematical modelling of the composting process: A review (2006) Waste Management, 26, pp. 3-21;Gertsev, V.I., Gertseva, V., Classification of mathematical models in ecology (2004) Ecological Modelling, 178, pp. 329-334;Baldwin, R.L., (1995) Modeling Ruminant Digestion and Metabolism, , Springer Science &Business Media;Thornley, J., France, J., (1984) Role of Modeling in Animal Production Research and Extension Work;Zhang, H.-Y., Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor (2006) Journal of Membrane Science, 279, pp. 301-310;Middleton, R.S., A dynamic model for optimally phasing in CO2 capture and storage infrastructure (2012) Environmental Modelling &Software, 37, pp. 193-205;Mirzaesmaeeli, H., A multi-period optimization model for energy planning with CO2 emission consideration (2010) Journal of Environmental Management, 91, pp. 1063-1070;Fan, Y., Analyzing impact factors of CO2 emissions using the STIRPAT model (2006) Environmental Impact Assessment Review, 26, pp. 377-395;Nordsveen, M., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: Theory and verification (2003) Corrosion, 59, pp. 443-456;Serna-Guerrero, R., Modeling CO2 adsorption on aminefunctionalized mesoporous silica: 1. A semi-empirical equilibrium model (2010) Chemical Engineering Journal, 161, pp. 173-181;Dixit, M.K., Identification of parameters for embodied energy measurement: A literature review (2010) Energy and Buildings, 42, pp. 1238-1247;Chang, Y., The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model (2010) Energy Policy, 38, pp. 6597-6603;Joel, A.S., Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations (2015) Applied Thermal Engineering, 74, pp. 47-53;Steeneveldt, R., CO2 capture and storage: Closing the knowing-doing gap (2006) Chemical Engineering Research and Design, 84, pp. 739-763;Wang, M., Post-combustion CO2 capture with chemical absorption: A state-of-The-art review (2011) Chemical Engineering Research and Design, 89, pp. 1609-1624;Kosinov, N., Recent developments in zeolite membranes for gas separation (2016) Journal of Membrane Science, 499, pp. 65-79;Rohde, M., Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development (2008) Microporous and Mesoporous Materials, 115, pp. 123-136;Caro, J., Noack, M., Zeolite membranes-recent developments and progress (2008) Microporous and Mesoporous Materials, 115, pp. 215-233;Li, C.-F., Zhong, S.-H., Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst (2003) Catalysis Today, 82, pp. 83-90;Van De Graaf, J.M., Modeling permeation of binary mixtures through zeolite membranes (1999) AIChE Journal, 45, pp. 497-511;Myers, A., Prausnitz, J.M., Thermodynamics of mixedgas adsorption (1965) AIChE Journal, 11, pp. 121-127;Orrego-Romero, A.F., Pelletization of catalysts supported on activated carbon. A Case Study: Clean synthesis of dimethyl carbonate from methanol and CO2 (2016) Revista Facultad de Ingeniería Universidad de Antioquia, pp. 38-47;Bustamante, F., Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol (2012) Industrial &Engineering Chemistry Research, 51, pp. 8945-8956 | spa |