Mostrar el registro sencillo del ítem

dc.creatorMoncada S.V.spa
dc.creatorPalacio M.G.spa
dc.creatorLuna-Delrisco M.spa
dc.creatorOrozco C.A.A.spa
dc.creatorJair J.spa
dc.creatorMontealegre J.J.Q.spa
dc.creatorImbachi J.C.spa
dc.creatorDiaz-Forero I.spa
dc.date.accessioned2018-10-31T13:44:18Z
dc.date.available2018-10-31T13:44:18Z
dc.date.created2018
dc.identifier.isbn9789899843486
dc.identifier.issn21660727
dc.identifier.urihttp://hdl.handle.net/11407/4864
dc.descriptionIn the last years research-based programs relevant to sustainability have been developed. Some technological research programs are focused on the design of systems and processes that can be useful for mitigating greenhouse gas emissions as CO2. To diminish the negative impact caused by CO2 for global warming, its chemical transformation in Dimethyl Carbonate is a promising technology. Dimethyl Carbonate is a solvent with low toxicity and due to oxidative capacity can be used as fuel additive. In this work, the membrane reactor technology to improve the Dymethyl Carbonate production is explored from the perspective of modelling and simulation. As a result, a software-based model is implemented, in order to develop and couple different models for describing the membrane reactor. Simulation results showed that the membrane reactor, compared with conventional reactor, increase the reaction conversion and Dymethyl Carbonate production up to 67% and 78%, respectively. Finally, it can be seen that the solution obtained from software-based model allows to conclude that membrane reactor is a promising technology to mitigate CO2 emissions, allowing to achieve environmental sustainability. © 2018 AISTI.spa
dc.language.isoeng
dc.publisherIEEE Computer Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049907918&doi=10.23919%2fCISTI.2018.8399195&partnerID=40&md5=b4c8431983c736c8cf64c68fed77547aspa
dc.sourceScopusspa
dc.subjectGreen reagentspa
dc.subjectGreenhouse emissionspa
dc.subjectMembrane reactor technologyspa
dc.subjectSimulationspa
dc.subjectSustainabilityspa
dc.subjectBioreactorsspa
dc.subjectCarbon dioxidespa
dc.subjectCarbonationspa
dc.subjectEnvironmental technologyspa
dc.subjectFuel additivesspa
dc.subjectGas emissionsspa
dc.subjectGlobal warmingspa
dc.subjectGreenhouse gasesspa
dc.subjectInformation systemsspa
dc.subjectInformation usespa
dc.subjectMembrane technologyspa
dc.subjectEnvironmental sustainabilityspa
dc.subjectGreen reagentspa
dc.subjectGreenhouse emissionsspa
dc.subjectGreenhouse gas mitigationspa
dc.subjectMembrane reactorspa
dc.subjectModelling and simulationsspa
dc.subjectSimulationspa
dc.subjectTechnological research projectsspa
dc.subjectSustainable developmentspa
dc.titleA software-based predictive model for greenhouse gas mitigation: Towards environmental sustainabilityspa
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energía;Ingeniería de Sistemas;Ingeniería de Telecomunicacionesspa
dc.contributor.affiliationMoncada, S.V., Universidad de Medellín;Palacio, M.G., Telecommunications Engineering Department;Luna-Delrisco, M., Universidad de Medellín;Orozco, C.A.A., Universidad de Medellín;Jair, J.,Universidad de Medellín;Montealegre, J.J.Q., Telecommunications Engineering Department;Imbachi, J.C., Telecommunications Engineering Department;Diaz-Forero, I., Servicio Nacional de Aprendizaje - SENAspa
dc.identifier.doi10.23919/CISTI.2018.8399195
dc.relation.citationvolume2018-June
dc.relation.citationstartpage1
dc.relation.citationendpage6
dc.publisher.facultyFacultad de Ingenieríasspa
dc.relation.ispartofesIberian Conference on Information Systems and Technologies, CISTIspa
dc.relation.referencesKates, R.W., Sustainability science (2001) Science, 292, pp. 641-642;Pielke, R.A., Jr., Hurricanes and global warming (2005) Bulletin of the American Meteorological Society, 86, pp. 1571-1575;Program, U.G.C.R., (2009) Global Climate Change Impacts in the United States, , Cambridge University Press;Knutson, T.R., Tropical cyclones and climate change (2010) Nature Geoscience, 3, p. 157;Blasing, T., Recent greenhouse gas concentrations (2016) ESS-DIVE (Environmental System Science Data Infrastructure for A Virtual Ecosystem), , Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States);(2005) Kyoto Protocol, , http://unfccc.int/kyoto_protocol/items/2830.php, U. N. F. C. C. Change;http://unfccc.int/paris_agreement/items/9485.php;(2015) Paris Agreement, , http://bigpicture.unfccc.int/#content-The-paris-agreemen, U. N. F. C. C. Change;Olivier, J., (2017) TRENDS in GLOBAL CO2 and TOTAL GREENHOUSE GAS EMISSIONS;Pridmore, A., (2003) Climate Change, Impacts, Future Scenarios Andthe Role of Transport;Springer, U., The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies (2003) Energy Economics, 25, pp. 527-551. , 2003/09/01/;Chapel, D.G., Recovery of CO2 from flue gases: Commercial trends (1999) Canadian Society of Chemical Engineers Annual Meeting;Zangeneh, F.T., Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism (2011) Journal of Natural Gas Chemistry, 20, pp. 219-231;Dave, N., CO2 capture by aqueous amines and aqueous ammonia-A Comparison (2009) Energy Procedia, 1, pp. 949-954;Schäffner, B., Organic carbonates as solvents in synthesis and catalysis (2010) Chemical Reviews, 110, pp. 4554-4581;Wen, L.-B., The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission (2010) Applied Energy, 87, pp. 115-121;Tundo, P., (2000) Dimethylcarbonate As A Green Reagent, , ed: ACS Publications;Pacheco, M.A., Marshall, C.L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive (1997) Energy &Fuels, 11, pp. 2-29;Santos, B.A., Review for the direct synthesis of dimethyl carbonate (2014) ChemBioEng Reviews, 1, pp. 214-229;Abanda, F., Mathematical modelling of embodied energy, greenhouse gases, waste, time-cost parameters of building projects: A review (2013) Building and Environment, 59, pp. 23-37;Mason, I., Mathematical modelling of the composting process: A review (2006) Waste Management, 26, pp. 3-21;Gertsev, V.I., Gertseva, V., Classification of mathematical models in ecology (2004) Ecological Modelling, 178, pp. 329-334;Baldwin, R.L., (1995) Modeling Ruminant Digestion and Metabolism, , Springer Science &Business Media;Thornley, J., France, J., (1984) Role of Modeling in Animal Production Research and Extension Work;Zhang, H.-Y., Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor (2006) Journal of Membrane Science, 279, pp. 301-310;Middleton, R.S., A dynamic model for optimally phasing in CO2 capture and storage infrastructure (2012) Environmental Modelling &Software, 37, pp. 193-205;Mirzaesmaeeli, H., A multi-period optimization model for energy planning with CO2 emission consideration (2010) Journal of Environmental Management, 91, pp. 1063-1070;Fan, Y., Analyzing impact factors of CO2 emissions using the STIRPAT model (2006) Environmental Impact Assessment Review, 26, pp. 377-395;Nordsveen, M., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 1: Theory and verification (2003) Corrosion, 59, pp. 443-456;Serna-Guerrero, R., Modeling CO2 adsorption on aminefunctionalized mesoporous silica: 1. A semi-empirical equilibrium model (2010) Chemical Engineering Journal, 161, pp. 173-181;Dixit, M.K., Identification of parameters for embodied energy measurement: A literature review (2010) Energy and Buildings, 42, pp. 1238-1247;Chang, Y., The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model (2010) Energy Policy, 38, pp. 6597-6603;Joel, A.S., Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations (2015) Applied Thermal Engineering, 74, pp. 47-53;Steeneveldt, R., CO2 capture and storage: Closing the knowing-doing gap (2006) Chemical Engineering Research and Design, 84, pp. 739-763;Wang, M., Post-combustion CO2 capture with chemical absorption: A state-of-The-art review (2011) Chemical Engineering Research and Design, 89, pp. 1609-1624;Kosinov, N., Recent developments in zeolite membranes for gas separation (2016) Journal of Membrane Science, 499, pp. 65-79;Rohde, M., Fischer-Tropsch synthesis with in situ H2O removal-Directions of membrane development (2008) Microporous and Mesoporous Materials, 115, pp. 123-136;Caro, J., Noack, M., Zeolite membranes-recent developments and progress (2008) Microporous and Mesoporous Materials, 115, pp. 215-233;Li, C.-F., Zhong, S.-H., Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst (2003) Catalysis Today, 82, pp. 83-90;Van De Graaf, J.M., Modeling permeation of binary mixtures through zeolite membranes (1999) AIChE Journal, 45, pp. 497-511;Myers, A., Prausnitz, J.M., Thermodynamics of mixedgas adsorption (1965) AIChE Journal, 11, pp. 121-127;Orrego-Romero, A.F., Pelletization of catalysts supported on activated carbon. A Case Study: Clean synthesis of dimethyl carbonate from methanol and CO2 (2016) Revista Facultad de Ingeniería Universidad de Antioquia, pp. 38-47;Bustamante, F., Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol (2012) Industrial &Engineering Chemistry Research, 51, pp. 8945-8956spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/conferenceObject


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem