Mostrar el registro sencillo del ítem
Advances in optimal control of differential systems with the state suprema
dc.creator | Verriest E.I. | spa |
dc.creator | Azhmyakov V. | spa |
dc.date.accessioned | 2018-10-31T13:44:21Z | |
dc.date.available | 2018-10-31T13:44:21Z | |
dc.date.created | 2018 | |
dc.identifier.isbn | 9781509028733 | |
dc.identifier.uri | http://hdl.handle.net/11407/4886 | |
dc.description | This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE. | spa |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046149590&doi=10.1109%2fCDC.2017.8263748&partnerID=40&md5=15857cd0b8e74fa217c3547b4f941b69 | spa |
dc.source | Scopus | spa |
dc.subject | Differential equations | spa |
dc.subject | Optimal control systems | spa |
dc.subject | Analytic technique | spa |
dc.subject | Differential systems | spa |
dc.subject | Functional differential equations | spa |
dc.subject | Modelling framework | spa |
dc.subject | Optimal control problem | spa |
dc.subject | Optimal controls | spa |
dc.subject | Optimal solutions | spa |
dc.subject | State dependent delay | spa |
dc.subject | Equations of state | spa |
dc.title | Advances in optimal control of differential systems with the state suprema | spa |
dc.type | Conference Paper | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.contributor.affiliation | Verriest, E.I., School of Electrical and Computer Engineering; Georgia Institute of Technology;Azhmyakov, V., Universidad de Medellin | spa |
dc.identifier.doi | 10.1109/CDC.2017.8263748 | |
dc.relation.citationvolume | 2018-January | |
dc.relation.citationstartpage | 739 | |
dc.relation.citationendpage | 744 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.relation.ispartofes | 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017 | spa |
dc.relation.references | Ahmed, A., Verriest, E.I., Nonlinear systems evolving with state suprema as multi-mode multi-dimensional systems: Analysis and observation (2015) Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems, pp. 242-247. , Atlanta, USA;Ahmed, A., Verriest, E.I., Estimator design for a subsonic rocket car (soft landing) based on state-dependent delay measurement (2013) Proceedings of the 52th IEEE Conference on Decision and Control, pp. 5698-5703. , Florence, Italy;Aiello, W.G., Freedman, H.I., Wu, J., Analysis of a model representing stage-structured population growth with state-dependent time delay (1992) SIAM Journal on Applied Mathematics, 52, pp. 855-869;Aliprantis, C.D., Border, K.C., (2006) Infinite Dimensional Analysis, , Springer, Berlin;Angeli, D., Sontag, E.D., Monotone control systems (2003) IEEE Transactions on Automatic Control, 48, pp. 1684-1698;Azhmyakov, V., Basin, M., Reincke-Collon, C., Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs (2014) Proceedings of the 19th IFAC World Congress, pp. 6976-6981. , Cape Town, South Africa;Azhmyakov, V., Ahmed, A., Verriest, E.I., On the optimal control of systems evolving with state suprema (2016) Proceedings of the 55th IEEE Conference on Decision and Control, pp. 3617-3623. , Las Vegas, USA;Azhmyakov, V., Juarez, R., A first-order numerical approach to switched-mode systems optimization (2017) Nonlinear Analysis: Hybrid Systems, , to appear;Bainov, D.D., Hristova, S.G., (2011) S.G. Differential Equations with Maxima, , CRC Press, New York;Basin, M., Optimal control for linear systems with multiple time delays in control input (2006) IEEE Transactions on Automatic Control, 51, pp. 91-97;Betts, J., (2001) Practical Methods for Optimal Control Problems Using Nonlinear Programming, , SIAM, Philadelphia, USA;Bohner, M.J., Georgieva, A.T., Hristova, S.G., Nonlinear differential equations with maxima: Parametric stability in terms of two measures (2013) Applied Mathematics and Information Sciences, 7, pp. 41-48;Colanery, P., Middleton, R.H., Chen, Z., Caporale, D., Blanchini, F., Convexity of the cost functional in an optimal control problem for a class of positive switched systems (2014) Automatica, 50, pp. 1227-1234;Egerstedt, M., Wardi, Y., Axelsson, H., Transition-time optimization for switched-mode dynamical systems (2006) IEEE Transactions on Automatic Control, 51, pp. 110-115;Farina, L., Rinaldi, S., (2000) Positive Linear Systems: Theory and Applications, , J. Wiley, New York;Hale, J.K., Lunel, S.M.V., (1993) Introduction to Functional Differential Equations, , Springer-Verlag, New York;Hartung, F., Pituk, M., (2014) Recent Advances in Delay Differential and Difference Equations, , Springer, Basel;Khalil, H.K., (1996) Nonlinear Systems, , Prentice Hall, Upper Saddle River;Kolesov, A.Yu., Mishchenko, E.F., Rozov, N.Kh., A modification of Hutchinsons equation (1998) Computational Mathematics and Mathematical Physics, 50, pp. 1990-2002;Luenberger, D.G., (1979) Introduction to Dynamic Systems: Theory, Models and Applications, , J. Wiley, New York;Malek-Zavarei, M., Jamshidi, M., (1987) Time-Delay Systems: Analysis, Optimization and Applications, , North Holland, Amsterdam;Minc, H., (1988) Nonnegative Matrices, , J. Wiley, New York;Otrocol, D., Rus, I.A., Functional-differential equations with maxima via weakly Picard operators theory (2018) Bull. Math. Soc. Sci. Math., 51, pp. 253-261;Poznyak, A., Polyakov, A., Azhmyakov, V., (2014) Attractive Ellipsoids in Robust Control, , Birkhäuser, Basel, Switzerland;Rockafellar, T., (1970) Convex Analysis, , Princeton University Press, Princeton;Smith, H.L., Monotone dynamical systems: An introduction to the theory of competetive and cooperative systems (1995) Mathematical Syrveys and Monographs, 41. , AMS;Teo, K.L., Goh, C.J., Wong, K.H., (1991) A Unifed Computational Approach to Optimal Control Problems, , Wiley, New York;Verriest, E.I., Pseudo-continuous multi-dimensional multi-mode systems (2012) Discrete Event Dynamic Systems, 22, pp. 27-59;Verriest, E.I., Dirr, G., Helmke, U., Mitesser, O., Explicitly solvable bilinear optimal control problems with applications in ecology (2016) Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems, , Minneapolis, MN;Walther, H.O., Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays (2010) Journal of Dynamics and Differential Equations, 22, pp. 439-462;Wardi, Y., Optimal control of switched-mode dynamical systems (2012) Proceedings of the 11th International Workshop on Discrete Event Systems, pp. 4-8. , Guadalajara, Mexico | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/conferenceObject |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]