Mostrar el registro sencillo del ítem
Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability
dc.creator | Vélez E. | spa |
dc.creator | Campillo G. | spa |
dc.creator | Morales G. | spa |
dc.creator | Hincapié C. | spa |
dc.creator | Osorio J. | spa |
dc.creator | Arnache O. | spa |
dc.date.accessioned | 2018-10-31T13:44:22Z | |
dc.date.available | 2018-10-31T13:44:22Z | |
dc.date.created | 2018 | |
dc.identifier.issn | 16874110 | |
dc.identifier.uri | http://hdl.handle.net/11407/4896 | |
dc.description | Silver nanoparticles (AgNPs) were synthesized by chemical reduction of Ag+ ions (from silver nitrate AgNO3), using aqueous or ethanolic Aloe vera extracts as reducing, stabilizing, and size control agent. The nanop articles' sizes were between 2 and 7nm for ethanolic extract and between 3 and 14nm for aqueous extract, as measured by High-Resolution Transmission Electron Microscope (HRTEM). The antibacterial activity against a mesophilic microorganism, Kocuria varians, a Gram-positive coccus, was measured by counting bacterial colonies in agar plate for both extracts. We found that 4% effective concentration is the lowest concentration that completely inhibited visible growth. Mercury removal was investigated by Atomic Absorption Spectroscopy (AAS) measurements, where it was shown that it is not necessary to use high concentrations of nano particles for effective removal of mercury inasmuch as with a 20% V/V concentration of both extracts; the Hg(II) removal percentage was above 95%. These results show that the mercury remaining un removed from the different essays is below the level allowed by World Health Organization (WHO) and the Environmental Protection Agency (EPA). © 2018 Ederley Vélez et al. | spa |
dc.language.iso | eng | |
dc.publisher | Hindawi Limited | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048382425&doi=10.1155%2f2018%2f7215210&partnerID=40&md5=d6e037c6959487df5f19e0b572130bf5 | spa |
dc.source | Scopus | spa |
dc.subject | Absorption spectroscopy | spa |
dc.subject | Atomic absorption spectrometry | spa |
dc.subject | Environmental Protection Agency | spa |
dc.subject | Metal nanoparticles | spa |
dc.subject | Silver compounds | spa |
dc.subject | Silver nanoparticles | spa |
dc.subject | Surface morphology | spa |
dc.subject | Synthesis (chemical) | spa |
dc.subject | Anti-bacterial activity | spa |
dc.subject | Atomic absorption spectroscopy | spa |
dc.subject | Bacterial colonies | spa |
dc.subject | Effective concentration | spa |
dc.subject | Gram-positive cocci | spa |
dc.subject | High-resolution transmission electron microscopes | spa |
dc.subject | Silver nanoparticles (AgNps) | spa |
dc.subject | World Health Organization | spa |
dc.subject | Mercury compounds | spa |
dc.title | Silver nanoparticles obtained by aqueous or ethanolic aloe Vera extracts: An assessment of the antibacterial activity and mercury removal capability | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | spa |
dc.publisher.program | Ciencias Básicas | spa |
dc.contributor.affiliation | Vélez, E., Universidad de Medellín;Campillo, G., Universidad de Medellín;Morales, G., Universidad DeMedellín;Hincapié, C., Universidad de Medellín;Osorio, J., Universidad de Antioquia;Arnache, O., Universidad de Antioquia | spa |
dc.identifier.doi | 10.1155/2018/7215210 | |
dc.relation.citationvolume | 2018 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.relation.ispartofes | Journal of Nanomaterials | spa |
dc.relation.references | Bhui, D.K., Misra, A., Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity (2012) Carbohydrate Polymers, 89 (3), pp. 830-835;Mohapatra, B., Kuriakose, S., Mohapatra, S., Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract (2015) Journal of Alloys and Compounds, 637, pp. 119-126;Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28;Narayanan, K.B., Park, H.H., Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens (2014) European Journal of Plant Pathology, 140 (2), pp. 185-192;Logeswari, P., Silambarasan, S., Abraham, J., Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property (2015) Journal of Saudi Chemical Society, 19 (3), pp. 311-317;Shameli, K., Ahmad, M.B., Al-Mulla, E.A.J., Green biosynthesis of silver nanoparticles using Callicarpamaingayi stem bark extraction (2012) Molecules, 17 (7), pp. 8506-8517;Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G., Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye (2016) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161, pp. 122-129;Luna, C., Chávez, V.H.G., Barriga-Castro, E.D., Núñez, N.O., Mendoza-Reséndez, R., Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds (2015) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, pp. 43-50;Edison, T.N.J.I., Sethuraman, M.G., Electrocatalytic reduction of benzyl chloride by green synthesized silver nanop articles using pod extract of Acacia nilotica (2013) ACS Sustainable Chemistry & Engineering, 1 (10), pp. 1326-1332;Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract (2006) Biotechnology Progress, 22 (2), pp. 577-583;Medda, S., Hajra, A., Dey, U., Bose, P., Mondal, N.K., Biosynthesis of silver nanoparticles fromAloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp (2015) Applied Nanoscience, 5 (7), pp. 875-880;Dinesh, D., Murugan, K., Madhiyazhagan, P., Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? (2015) Parasitology Research, 114 (4), pp. 1519-1529;Zhang, Y., Yang, D., Kong, Y., Wang, X., Pandoli, O., Gao, G., Synergetic antibacterial effects of silver Nanoparticles@Aloe vera prepared via a greenmethod (2010) Nano Biomedicine and Engineering, 2 (4), pp. 252-257;Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E., Dang, M.C., Synthesis and optical properties of copper nanoparticles prepared by a chemical reductionmethod (2011) Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (1);Nandal, U., Bhardwaj, R.L., Aloe vera: A valuable wonder plant for food, medicine and cosmetic use-A review (2012) International Journal of Pharmaceutical Sciences Review and Research, 13 (1), pp. 59-67;Theivasanthi, T., Alagar, M., Electrolytic synthesis and characterization of silver nanopowder (2012) Nano Biomedicine and Engineering, 4 (2), pp. 58-65;Wang, J.-X., Wen, L.-X., Wang, Z.-H., Chen, J.-F., Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects (2006) Materials Chemistry and Physics, 96 (1), pp. 90-97;Marambio-Jones, C., Hoek, E.M.V., Areviewof the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) Journal of Nanoparticle Research, 12 (5), pp. 1531-1551;Shenashen, M.A., El-Safty, S.A., Elshehy, E.A., Synthesis, morphological control, and properties of silver nanoparticles in potential applications (2014) Particle & Particle Systems Characterization, 31 (3), pp. 293-316;Pradeep, T., Anshup, Noble metal nanoparticles for water purification: A critical review (2009) Thin Solid Films, 517 (24), pp. 6441-6478;Becaro, A.A., Puti, F.C., Panosso, A.R., Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles (2016) Food and Bioprocess Technology, 9 (4), pp. 637-649;Durán, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E., Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment (2007) Journal of Biomedical Nanotechnology, 3 (2), pp. 203-208;Zhang, S., Tang, Y., Vlahovic, B., A review on preparation and applications of silver-containing nanofibers (2016) Nanoscale Research Letters, 11 (1);Contescu, C.I., Putyera, K., (2008) Dekker Encyclopedia of Nanoscience and Nanotechnology, 6. , CRC Press, 2nd edition;Rajaram, K., Aiswarya, D.C., Sureshkumar, P., Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity (2015) Materials Letters, 138, pp. 251-254;Manimegalai, G., Shantha Kumar, S., Sharma, C., Pesticide mineralization in water using silver nanoparticles (2011) International Journal of Chemical Sciences, 9 (3), pp. 1463-1471;Bootharaju, M.S., Pradeep, T., Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: An x-ray photoelectron spectroscopic investigation (2010) The Journal of Physical Chemistry C, 114 (18), pp. 8328-8336;Sumesh, E., Bootharaju, M.S., Pradeep, T., A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water (2011) Journal of Hazardous Materials, 189 (1-2), pp. 450-457;Katok, K.V., Whitby, R.L.D., Fukuda, T., Hyperstoichiometric interaction between silver and mercury at the nanoscale (2012) Angewandte Chemie International Edition, 51 (11), pp. 2632-2635;Esmaielzadeh Kandjani, A., Sabri, Y.M., Mohammad-Taheri, M., Bansal, V., Bhargava, S.K., Detect, remove and reuse:Anew paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays (2015) Environmental Science & Technology, 49 (3), pp. 1578-1584;Gloria, E.C., Ederley, V., Gladis, M., Synthesis of silver nanoparticles (AgNPs) with antibacterial activity (2017) Journal of Physics: Conference Series, 850 (1);Rasband, W.S., (1997) Image J, , http://imagej.nih.gov/ij/, U.S. National Institutes of Health, Bethesda, Md, USA;Siegert, I., Banks, C., The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors (2005) Process Biochemistry, 40 (11), pp. 3412-3418;Purty, S., Saranathan, R., Prashanth, K., The expanding spectrum of human infections caused by Kocuria species: A case report and literature review (2013) Emerging Microbes & Infections, 2 (10);Kandi, V., Palange, P., Vaish, R., Emerging bacterial infection: Identification and clinical significance of Kocuria species (2016) Cureus, 8;Tsai, C.-Y., Su, S.-H., Cheng, Y.-H., Chou, Y.-L., Tsai, T.-H., Lieu, A.-S., Kocuria varians infection associated with brain abscess: A case report (2010) BMC Infectious Diseases, 10;Benites, J., Ayala, Z., Málaga, J., Reporte de un caso de infección urinaria por kocuria varians (2015) Revista de Investigación de la Universidad Norbert Wiener, (4), pp. 33-36;Sobhani, S., Pakdin-Parizi, Z., Palladium-DABCO complex supported on ?-Fe2O3 magnetic nanoparticles: A new catalyst for CC bond formation viaMizoroki-Heck cross-coupling reaction (2014) Applied Catalysis A: General, 479, pp. 112-120;(2010) National Recommended Water Quality Criteria for Priority Toxic Pollutants, Document EPA-Z-99-01, , U.S. Environmental Protection Agency | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]