Mostrar el registro sencillo del ítem

dc.creatorBravo S.spa
dc.creatorCorrea J.spa
dc.creatorChico L.spa
dc.creatorPacheco M.spa
dc.date.accessioned2018-10-31T13:44:23Z
dc.date.available2018-10-31T13:44:23Z
dc.date.created2018
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/4905
dc.descriptionWe present a tight-binding parametrization for penta-graphene that correctly describes its electronic band structure and linear optical response. The set of parameters is validated by comparing to ab-initio density functional theory calculations for single-layer penta-graphene, showing a very good global agreement. We apply this parameterization to penta-graphene nanoribbons, achieving an adequate description of quantum-size effects. Additionally, a symmetry-based analysis of the energy band structure and the optical transitions involved in the absorption spectra is introduced, allowing for the interpretation of the optoelectronic features of these systems. © 2018, The Author(s).spa
dc.language.isoeng
dc.publisherNature Publishing Groupspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050597270&doi=10.1038%2fs41598-018-29288-8&partnerID=40&md5=af41a94d53ed2d0bc22d7c06fa3c9274spa
dc.sourceScopusspa
dc.titleTight-binding model for opto-electronic properties of penta-graphene nanostructuresspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.contributor.affiliationBravo, S., Universidad Técnica Federico Santa María;Correa, J., Universidad de Medellín;Chico, L., Instituto de Ciencia de Materiales de Madrid (ICMM); Consejo Superior de Investigaciones Científicas (CSIC);Pacheco, M., Universidad Técnica Federico Santa Maríaspa
dc.identifier.doi10.1038/s41598-018-29288-8
dc.relation.citationvolume8
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.relation.ispartofesScientific Reportsspa
dc.relation.referencesSci, , Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. AcadUSA 102, 10451 (2005);Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113, pp. 3766-3798. , PID: 23286380;Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, p. 640. , PID: 25380184;Molle, A., Buckled two-dimensional xene sheets (2017) Nat. Mater., 16, p. 163. , PID: 28092688;Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U., Quasi-free-standing epitaxial graphene on sic obtained by hydrogen intercalation (2009) Phys. Rev. Lett., 103, p. 246804;Naguib, M., Two-dimensional nanocrystals produced by exfoliation of ti3alc2 (2011) Adv. Mater., 23, pp. 4248-4253;Zhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , PID: 25646451;Ewels, C.P., Predicting experimentally stable allotropes: Instability of penta-graphene (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 15609-15612. , PID: 26644554;Avramov, P., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) The J. Phys. Chem. Lett., 6, pp. 4525-4531;Mayorov, A.S., Micrometer-scale ballistic transport in encapsulated graphene at room temperature (2011) Nano Letters, 11, pp. 2396-2399;Wang, L., Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-bn sandwich structure (2012) ACS Nano, 6, pp. 9314-9319;Xu, W., Zhang, G., Li, B., Thermal conductivity of penta-graphene from molecular dynamics study (2015) The J. Chem. Phys., 143, p. 154703. , PID: 26493918;Liu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Lett., 16, pp. 3831-3842. , PID: 27228130;Wang, F.Q., Yu, J., Wang, Q., Kawazoe, Y., Jena, P., Lattice thermal conductivity of penta-graphene (2016) Carbon, 105, pp. 424-429;Sun, H., Mukherjee, S., Singh, C.V., Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study (2016) Phys. Chem. Chem. Phys., 18, pp. 26736-26742. , PID: 27722589;Xiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A promising anode material as the li/na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate (2016) ACS Appl. Mater. & Interfaces, 8, pp. 35342-35352;Krishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for co oxidation (2017) Carbon, 114, pp. 465-472;Enriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) Int. J. Hydrog. Energy, 41, pp. 12157-12166;Quijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic dft-d study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , PID: 27220553;Wu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Lett., 16, pp. 3925-3935. , PID: 27152879;Li, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , PID: 27063837;Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125;He, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , PID: 28678250;Yuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , PID: 28345700;Yu, Z.G., Zhang, Y.-W., A comparative density functional study on electrical properties of layered penta-graphene (2015) J. Appl. Phys., 118, p. 165706;Chen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The J. Phys. Chem. C, 121, pp. 9642-9647;Stauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6;Miller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, Denver;http://www.cryst.ehu.es/, (Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, Spain);Soler, J.M., The siesta method for ab initio order-n materials simulation (2002) J. Physics: Condens. Matter, 14, p. 2745;Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865. , PID: 10062328;Slater, J.C., Koster, J.F., Simplified LCAO Method for the Periodic Potential Problem. Phys (1954) Rev, 94, p. 1498;Lew Yan Voon, L.C., Ram-Mohan, L.R., Tight-binding representation of the optical matrix elements: Theory and applications (1993) Phys. Rev. B, 47, pp. 15500-15508;Graf, M., Vogl, P., Electromagnetic fields and dielectric response in empirical tight-binding theory (1995) Phys. Rev. B, 51, pp. 4940-4949;Zarifi, A., Pedersen, T.G., Universal analytic expression of electric-dipole matrix elements for carbon nanotubes (2009) Phys. Rev. B, 80, p. 195422;Dresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, Berlin;Damnjanovi?, M., Milo?evi?, I., (2010) Line Groups in Physics, , Springer, Berlinspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem