REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A wave parameters and directional spectrum analysis for extreme winds

Thumbnail
Share this
Date
2013
Author
Montoya
R.D.
Arias
A.O.
Royero
J.C.O.
Ocampo-Torres
F.J.
TY - GEN T1 - A wave parameters and directional spectrum analysis for extreme winds AU - Montoya AU - R.D. AU - Arias AU - A.O. AU - Royero AU - J.C.O. AU - Ocampo-Torres AU - F.J. Y1 - 2013 UR - http://hdl.handle.net/11407/4932 AB - In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III? and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter-izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III? presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III? model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III? model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA). © 2013 Elsevier Ltd. All rights reserved. ER - @misc{11407_4932, author = {Montoya and R.D. and Arias and A.O. and Royero and J.C.O. and Ocampo-Torres and F.J.}, title = {A wave parameters and directional spectrum analysis for extreme winds}, year = {2013}, abstract = {In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III? and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter-izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III? presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III? model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III? model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA). © 2013 Elsevier Ltd. All rights reserved.}, url = {http://hdl.handle.net/11407/4932} }RT Generic T1 A wave parameters and directional spectrum analysis for extreme winds A1 Montoya A1 R.D. A1 Arias A1 A.O. A1 Royero A1 J.C.O. A1 Ocampo-Torres A1 F.J. YR 2013 LK http://hdl.handle.net/11407/4932 AB In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III? and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter-izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III? presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III? model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III? model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA). © 2013 Elsevier Ltd. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III? and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter-izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III? presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III? model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III? model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA). © 2013 Elsevier Ltd. All rights reserved.
URI
http://hdl.handle.net/11407/4932
Collections
  • Indexados Scopus [1069]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A wave parameters and directional spectrum analysis for extreme winds 

    Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier (ElsevierIngeniería CivilFacultad de Ingenierías, 2013)
    In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface ...
  • Thumbnail

    Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory 

    Aab A.; Abreu P.; Aglietta M.; Albury J.M.; Allekotte I.; Almela A.; Alvarez Castillo J.; Alvarez-Muñiz J.; Alves Batista R.; Anastasi G.A.; Anchordoqui L.; Andrada B.; Andringa S.; Aramo C.; Araújo Ferreira P.R.; Asorey H.; Assis P.; Avila G.; Badescu A.M.; Bakalova A.; Balaceanu A.; Barbato F.; Barreira Luz R.J.; Becker K.H.; Bellido J.A.; Berat C.; Bertaina M.E.; Bertou X.; Biermann P.L.; Bister T.; Biteau J.; Blanco A.; Blazek J.; Bleve C.; Boháčová M.; Boncioli D.; Bonifazi C.; Bonneau Arbeletche L.; Borodai N.; Botti A.M.; Brack J.; Bretz T.; Briechle F.L.; Buchholz P.; Bueno A.; Buitink S.; Buscemi M.; Caballero-Mora K.S.; Caccianiga L.; Calcagni L.; Cancio A.; Canfora F.; Caracas I.; Carceller J.M.; Caruso R.; Castellina A.; Catalani F.; Cataldi G.; Cazon L.; Cerda M.; Chinellato J.A.; Choi K.; Chudoba J.; Chytka L.; Clay R.W.; Cobos Cerutti A.C.; Colalillo R.; Coleman A.; Coluccia M.R.; Conceição R.; Condorelli A.; Consolati G.; Contreras F.; Convenga F.; Covault C.E.; Dasso S.; Daumiller K.; Dawson B.R.; Day J.A.; De Almeida R.M.; De Jesús J.; De Jong S.J.; De Mauro G.; De Mello Neto J.R.T.; De Mitri I.; De Oliveira J.; De Oliveira Franco D.; De Souza V.; De Vito E.; Debatin J.; Del Río M.; Deligny O.; Dembinski H.; Dhital N.; Di Giulio C.; Di Matteo A.; Díaz Castro M.L.; Dobrigkeit C.; D'Olivo J.C.; Dorosti Q.; Dos Anjos R.C.; Dova M.T.; Ebr J.; Engel R.; Epicoco I.; Erdmann M.; Escobar C.O.; Etchegoyen A.; Falcke H.; Farmer J.; Farrar G.; Fauth A.C.; Fazzini N.; Feldbusch F.; Fenu F.; Fick B.; Figueira J.M.; Filipčič A.; Fodran T.; Freire M.M.; Fujii T.; Fuster A.; Galea C.; Galelli C.; García B.; Garcia Vegas A.L.; Gemmeke H.; Gesualdi F.; Gherghel-Lascu A.; Ghia P.L.; Giaccari U.; Giammarchi M.; Giller M.; Glombitza J.; Gobbi F.; Gollan F.; Golup G.; Gómez Berisso M.; Gómez Vitale P.F.; Gongora J.P.; González N.; Goos I.; Góra D.; Gorgi A.; Gottowik M.; Grubb T.D.; Guarino F.; Guedes G.P.; Guido E.; Hahn S.; Halliday R.; Hampel M.R.; Hansen P.; Harari D.; Harvey V.M.; Haungs A.; Hebbeker T.; Heck D.; Hill G.C.; Hojvat C.; Hörandel J.R.; Horvath P.; Hrabovský M.; Huege T.; Hulsman J.; Insolia A.; Isar P.G.; Johnsen J.A.; Jurysek J.; Kääpä A.; Kampert K.H.; Keilhauer B.; Kemp J.; Klages H.O.; Kleifges M.; Kleinfeller J.; Köpke M.; Kukec Mezek G.; Lago B.L.; Lahurd D.; Lang R.G.; Leigui De Oliveira M.A.; Lenok V.; Letessier-Selvon A.; Lhenry-Yvon I.; Lo Presti D.; Lopes L.; López R.; Lorek R.; Luce Q.; Lucero A.; Machado Payeras A.; Malacari M.; Mancarella G.; Mandat D.; Manning B.C.; Manshanden J.; Mantsch P.; Marafico S.; Mariazzi A.G.; Mariş I.C.; Marsella G.; Martello D.; Martinez H.; Martínez Bravo O.; Mastrodicasa M.; Mathes H.J.; Matthews J.; Matthiae G.; Mayotte E.; Mazur P.O.; Medina-Tanco G.; Melo D.; Menshikov A.; Merenda K.-D.; Michal S.; Micheletti M.I.; Miramonti L.; Mockler D.; Mollerach S.; Montanet F.; Morello C.; Mostafá M.; Müller A.L.; Muller M.A.; Mulrey K.; Mussa R.; Muzio M.; Namasaka W.M.; Nellen L.; Nguyen P.H.; Niculescu-Oglinzanu M.; Niechciol M.; Nitz D.; Nosek D.; Novotny V.; NoŽka L.; Nucita A.; Núñez L.A.; Palatka M.; Pallotta J.; Panetta M.P.; Papenbreer P.; Parente G.; Parra A.; Pech M.; Pedreira F.; P ©kala J.; Pelayo R.; Peña-Rodriguez J.; Perez Armand J.; Perlin M.; Perrone L.; Peters C.; Petrera S.; Pierog T.; Pimenta M.; Pirronello V.; Platino M.; Pont B.; Pothast M.; Privitera P.; Prouza M.; Puyleart A.; Querchfeld S.; Rautenberg J.; Ravignani D.; Reininghaus M.; Ridky J.; Riehn F.; Risse M.; Ristori P.; Rizi V.; Rodrigues De Carvalho W.; Rodriguez Fernandez G.; Rodriguez Rojo J.; Roncoroni M.J.; Roth M.; Roulet E.; Rovero A.C.; Ruehl P.; Saffi S.J.; Saftoiu A.; Salamida F.; Salazar H.; Salina G.; Sanabria Gomez J.D.; Sánchez F.; Santos E.M.; Santos E.; Sarazin F.; Sarmento R.; Sarmiento-Cano C.; Sato R.; Savina P.; Schäfer C.; Scherini V.; Schieler H.; Schimassek M.; Schimp M.; Schlüter F.; Schmidt D.; Scholten O.; Schovánek P.; Schröder F.G.; Schröder S.; Schulz A.; Sciutto S.J.; Scornavacche M.; Shellard R.C.; Sigl G.; Silli G.; Sima O.; Šmída R.; Sommers P.; Soriano J.F.; Souchard J.; Squartini R.; Stadelmaier M.; Stanca D.; Stanič S.; Stasielak J.; Stassi P.; Streich A.; Suárez-Durán M.; Sudholz T.; Suomijärvi T.; Supanitsky A.D.; Šupík J.; Szadkowski Z.; Taboada A.; Tapia A.; Timmermans C.; Tkachenko O.; Tobiska P.; Todero Peixoto C.J.; Tomé B.; Torralba Elipe G.; Travaini A.; Travnicek P.; Trimarelli C.; Trini M.; Tueros M.; Ulrich R.; Unger M.; Urban M.; Vaclavek L.; Vacula M.; Valdés Galicia J.F.; Valiño I.; Valore L.; Van Vliet A.; Varela E.; Vargas Cárdenas B.; Vásquez-Ramírez A.; Veberič D.; Ventura C.; Vergara Quispe I.D.; Verzi V.; Vicha J.; Villaseñor L.; Vink J.; Vorobiov S.; Wahlberg H.; Watson A.A.; Weber M.; Weindl A.; Wiencke L.; Wilczyński H.; Winchen T.; Wirtz M.; Wittkowski D.; Wundheiler B.; Yushkov A.; Zapparrata O.; Zas E.; Zavrtanik D.; Zavrtanik M.; Zehrer L.; Zepeda A.; Ziolkowski M.; Zuccarello F.; (The Pierre Auger Collaboration)
    We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×1018 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies ...
  • Thumbnail

    Features of the energy spectrum of cosmic rays above 2.5×1018 eV using the pierre auger observatory 

    Aab A.; Abreu P.; Aglietta M.; Albury J.M.; Allekotte I.; Almela A.; Alvarez Castillo J.; Alvarez-Muñiz J.; Alves Batista R.; Anastasi G.A.; Anchordoqui L.; Andrada B.; Andringa S.; Aramo C.; Araújo Ferreira P.R.; Asorey H.; Assis P.; Avila G.; Badescu A.M.; Bakalova A.; Balaceanu A.; Barbato F.; Barreira Luz R.J.; Becker K.H.; Bellido J.A.; Berat C.; Bertaina M.E.; Bertou X.; Biermann P.L.; Bister T.; Biteau J.; Blanco A.; Blazek J.; Bleve C.; Boháčová M.; Boncioli D.; Bonifazi C.; Bonneau Arbeletche L.; Borodai N.; Botti A.M.; Brack J.; Bretz T.; Briechle F.L.; Buchholz P.; Bueno A.; Buitink S.; Buscemi M.; Caballero-Mora K.S.; Caccianiga L.; Calcagni L.; Cancio A.; Canfora F.; Caracas I.; Carceller J.M.; Caruso R.; Castellina A.; Catalani F.; Cataldi G.; Cazon L.; Cerda M.; Chinellato J.A.; Choi K.; Chudoba J.; Chytka L.; Clay R.W.; Cobos Cerutti A.C.; Colalillo R.; Coleman A.; Coluccia M.R.; Conceição R.; Condorelli A.; Consolati G.; Contreras F.; Convenga F.; Covault C.E.; Dasso S.; Daumiller K.; Dawson B.R.; Day J.A.; De Almeida R.M.; De Jesús J.; De Jong S.J.; De Mauro G.; De Mello Neto J.R.T.; De Mitri I.; De Oliveira J.; De Oliveira Franco D.; De Souza V.; De Vito E.; Debatin J.; Del Río M.; Deligny O.; Dembinski H.; Dhital N.; Di Giulio C.; Di Matteo A.; Díaz Castro M.L.; Dobrigkeit C.; D'Olivo J.C.; Dorosti Q.; Dos Anjos R.C.; Dova M.T.; Ebr J.; Engel R.; Epicoco I.; Erdmann M.; Escobar C.O.; Etchegoyen A.; Falcke H.; Farmer J.; Farrar G.; Fauth A.C.; Fazzini N.; Feldbusch F.; Fenu F.; Fick B.; Figueira J.M.; Filipčič A.; Fodran T.; Freire M.M.; Fujii T.; Fuster A.; Galea C.; Galelli C.; García B.; Garcia Vegas A.L.; Gemmeke H.; Gesualdi F.; Gherghel-Lascu A.; Ghia P.L.; Giaccari U.; Giammarchi M.; Giller M.; Glombitza J.; Gobbi F.; Gollan F.; Golup G.; Gómez Berisso M.; Gómez Vitale P.F.; Gongora J.P.; González N.; Goos I.; Góra D.; Gorgi A.; Gottowik M.; Grubb T.D.; Guarino F.; Guedes G.P.; Guido E.; Hahn S.; Halliday R.; Hampel M.R.; Hansen P.; Harari D.; Harvey V.M.; Haungs A.; Hebbeker T.; Heck D.; Hill G.C.; Hojvat C.; Hörandel J.R.; Horvath P.; Hrabovský M.; Huege T.; Hulsman J.; Insolia A.; Isar P.G.; Johnsen J.A.; Jurysek J.; Kääpä A.; Kampert K.H.; Keilhauer B.; Kemp J.; Klages H.O.; Kleifges M.; Kleinfeller J.; Köpke M.; Kukec Mezek G.; Lago B.L.; Lahurd D.; Lang R.G.; Leigui De Oliveira M.A.; Lenok V.; Letessier-Selvon A.; Lhenry-Yvon I.; Lo Presti D.; Lopes L.; López R.; Lorek R.; Luce Q.; Lucero A.; MacHado Payeras A.; Malacari M.; Mancarella G.; Mandat D.; Manning B.C.; Manshanden J.; Mantsch P.; Marafico S.; Mariazzi A.G.; Mariş I.C.; Marsella G.; Martello D.; Martinez H.; Martínez Bravo O.; Mastrodicasa M.; Mathes H.J.; Matthews J.; Matthiae G.; Mayotte E.; Mazur P.O.; Medina-Tanco G.; Melo D.; Menshikov A.; Merenda K.-D.; Michal S.; Micheletti M.I.; Miramonti L.; Mockler D.; Mollerach S.; Montanet F.; Morello C.; Mostafá M.; Müller A.L.; Muller M.A.; Mulrey K.; Mussa R.; Muzio M.; Namasaka W.M.; Nellen L.; Nguyen P.H.; Niculescu-Oglinzanu M.; Niechciol M.; Nitz D.; Nosek D.; Novotny V.; NoŽka L.; Nucita A.; Núñez L.A.; Palatka M.; Pallotta J.; Panetta M.P.; Papenbreer P.; Parente G.; Parra A.; Pech M.; Pedreira F.; Pkala J.; Pelayo R.; Peña-Rodriguez J.; Perez Armand J.; Perlin M.; Perrone L.; Peters C.; Petrera S.; Pierog T.; Pimenta M.; Pirronello V.; Platino M.; Pont B.; Pothast M.; Privitera P.; Prouza M.; Puyleart A.; Querchfeld S.; Rautenberg J.; Ravignani D.; Reininghaus M.; Ridky J.; Riehn F.; Risse M.; Ristori P.; Rizi V.; Rodrigues De Carvalho W.; Rodriguez Fernandez G.; Rodriguez Rojo J.; Roncoroni M.J.; Roth M.; Roulet E.; Rovero A.C.; Ruehl P.; Saffi S.J.; Saftoiu A.; Salamida F.; Salazar H.; Salina G.; Sanabria Gomez J.D.; Sánchez F.; Santos E.M.; Santos E.; Sarazin F.; Sarmento R.; Sarmiento-Cano C.; Sato R.; Savina P.; Schäfer C.; Scherini V.; Schieler H.; Schimassek M.; Schimp M.; Schlüter F.; Schmidt D.; Scholten O.; Schovánek P.; Schröder F.G.; Schröder S.; Schulz A.; Sciutto S.J.; Scornavacche M.; Shellard R.C.; Sigl G.; Silli G.; Sima O.; Šmída R.; Sommers P.; Soriano J.F.; Souchard J.; Squartini R.; Stadelmaier M.; Stanca D.; Stanič S.; Stasielak J.; Stassi P.; Streich A.; Suárez-Durán M.; Sudholz T.; Suomijärvi T.; Supanitsky A.D.; Šupík J.; Szadkowski Z.; Taboada A.; Tapia A.; Timmermans C.; Tkachenko O.; Tobiska P.; Todero Peixoto C.J.; Tomé B.; Torralba Elipe G.; Travaini A.; Travnicek P.; Trimarelli C.; Trini M.; Tueros M.; Ulrich R.; Unger M.; Urban M.; Vaclavek L.; Vacula M.; Valdés Galicia J.F.; Valiño I.; Valore L.; Van Vliet A.; Varela E.; Vargas Cárdenas B.; Vásquez-Ramírez A.; Veberič D.; Ventura C.; Vergara Quispe I.D.; Verzi V.; Vicha J.; Villaseñor L.; Vink J.; Vorobiov S.; Wahlberg H.; Watson A.A.; Weber M.; Weindl A.; Wiencke L.; Wilczyński H.; Winchen T.; Wirtz M.; Wittkowski D.; Wundheiler B.; Yushkov A.; Zapparrata O.; Zas E.; Zavrtanik D.; Zavrtanik M.; Zehrer L.; Zepeda A.; Ziolkowski M.; Zuccarello F.; (The Pierre Auger Collaboration)
    We report a measurement of the energy spectrum of cosmic rays above 2.5×1018 eV based on 215 030 events. New results are presented: at about 1.3×1019 eV, the spectral index changes from 2.51±0.03(stat)±0.05(syst) to ...
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com