Mostrar el registro sencillo del ítem

dc.creatorDíaz-García J.A.
dc.creatorCaro-Lopera F.J.
dc.date2020
dc.date.accessioned2020-04-29T14:53:33Z
dc.date.available2020-04-29T14:53:33Z
dc.identifier.issn10186301
dc.identifier.urihttp://hdl.handle.net/11407/5647
dc.descriptionSome general problems of Jacobian computations in non-full rank matrices are revised in this work. We prove that the Jacobian of the Moore Penrose inverse derived via matrix differential calculus is incorrect. In addition, the Jacobian in the full rank case is derived under the simple and old theory of the exterior product. © 2020, Iranian Mathematical Society.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079634164&doi=10.1007%2fs41980-020-00365-x&partnerID=40&md5=59e022b080e4fa77192f27d3a35b0305
dc.sourceBulletin of the Iranian Mathematical Society
dc.subjectGeneralised inverse
dc.subjectHausdorff measure
dc.subjectJacobian
dc.subjectLebesgue measure
dc.subjectMatrix differentiation
dc.titleA Note About Measures, Jacobians and Moore–Penrose Inverse
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1007/s41980-020-00365-x
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationDíaz-García, J.A., Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Zootecnia, Chihuahua, Chihuahua 33820, Mexico; Caro-Lopera, F.J., Faculty of Basic Sciences, Universidad de Medellín, Carrera 87 No. 30-65, of. 4-216, Medellín, Colombia
dc.relation.referencesBillingsley, P., (1986) Probability and Measure, , 2, Wiley, New York
dc.relation.referencesBodnar, T., Okhrin, Y., Properties of the singular, inverse and generalized inverse partitioned Wishart distributions (2008) J. Multivar. Anal., 99, pp. 2389-2405
dc.relation.referencesCadet, A., Polar coordinates in Rnp
dc.relation.referencesapplication to the computation of the Wishart and beta laws (1996) Sankhy? A, 58, pp. 101-113
dc.relation.referencesCampbell, S.L., Meyer, C.D., Jr., (2009) Generalized Inverses of Linear Transformations, , Pitman, London
dc.relation.referencesDíaz-García, J.A., A note about measures and Jacobians of random matrices (2007) J. Multivar. Anal., 98, pp. 960-969
dc.relation.referencesDíaz-García, J.A., González-Farías, G., Singular random matrix decompositions: Jacobians (2005) J. Multivar. Anal., 93 (2), pp. 196-212
dc.relation.referencesDíaz-García, J.A., Gutiérrez-Jáimez, R., Functions of singular random matrices with applications (2005) Test, 14, pp. 475-487
dc.relation.referencesDíaz-García, J.A., Gutiérrez-Jáimez, R., Distribution of the generalised inverse of a random matrix and its applications (2006) J. Stat. Plan. Inference, 136, pp. 183-192
dc.relation.referencesDíaz-García, J.A., Gutiérrez-Jáimez, R., Proof of the conjectures of H. Uhlig on the singular multivariate beta and the Jacobian of a certain matrix transformation (1997) Ann. Stat., 25, pp. 2018-2023
dc.relation.referencesDíaz-García, J.A., Gutiérrez-Jáimez, R., Mardia, K.V., Wishart and Pseudo-Wishart distributions and some applications to shape theory (1997) J. Multivar. Anal., 63, pp. 73-87
dc.relation.referencesEvans, L.C., Garyepy, R.F., (1992) Measure Theory and Fine Properties of Functions, , CRC Press Inc., Boca Raton
dc.relation.referencesGolub, G.H., Pereyra, V., The differentation of pseudo inverses and nonlinear least squares problems whose variables separate (1997) SIAM J. Numer. Anal., 10 (2), pp. 413-432
dc.relation.referencesGorecki, T., Luczak, M., Linear discriminant analysis with a generalization of the Moore Penrose pseudoinverse (2013) Int. J. Appl. Math. Comput., 23 (2), pp. 463-471
dc.relation.referencesGraybill, F.A., (1976) Theory and Application of the Linear Model, , Wadsworth & Brooks/Cole, Pacific Grove
dc.relation.referencesHerz, C.S., Bessel functions of matrix argument (1955) Ann. Math., 61, pp. 474-523
dc.relation.referencesJames, A.T., Normal multivariate analysis and the orthogonal group (1954) Ann. Math. Stat., 25, pp. 40-75
dc.relation.referencesKhatri, C.G., Some results for the singular normal multivariate regression models (1968) Sankhy? A, 30, pp. 267-280
dc.relation.referencesLv, X., Xiao, L., Tan, Z., Zhi, Y., Yuan, J., Improved gradient neural networks for solving Moore Penrose inverse of full-rank matrix (2019) Neural Process. Lett., 50 (2), pp. 1993-2005
dc.relation.referencesMagnus, J.R., (1988) Linear Structures, , Charles Griffin & Company Ltd, London
dc.relation.referencesMathai, A.M., (1997) Jacobian of Matrix Transformations and Functions of Matrix Argument, , World Scinentific, Singapore
dc.relation.referencesMagnus, J.R., Neudecker, H., (2007) Matrix Differential Calculus with Application in Statistics and Econometrics, , 3, Wiley, Chichester
dc.relation.referencesMuirhead, R.J., (2005) Aspects of Multivariated Statistical Theory, , Wiley, New York
dc.relation.referencesNeudecker, H., Shuangzhe, L., The density of the Moore Penrose inverse of a random matrix (1996) Linear Algebra Appl., 237 (238), pp. 123-126
dc.relation.referencesRoy, S.N., (1957) Some Aspects of Multivariate Analysis, , Wiley, New York
dc.relation.referencesSpivak, M., (1965) Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, , Addison-Wesley Publishing Company, Reading
dc.relation.referencesUhlig, H., On singular Wishart and singular multivariate beta distributions (1994) Ann. Stat., 22 (1), pp. 395-405
dc.relation.referencesZhang, Y., The exact distribution of the Mooore Penrose inverse of X with a density (1985) Multivariate Analysis VI, pp. 633-635. , Krishnaiah PR, (ed), Elsevier Science, Amsterdam
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem