Mostrar el registro sencillo del ítem

dc.creatorAriza-Jiménez L.
dc.creatorPinel N.
dc.creatorVilla L.F.
dc.creatorQuintero O.L.
dc.date2020
dc.date.accessioned2020-04-29T14:53:34Z
dc.date.available2020-04-29T14:53:34Z
dc.identifier.isbn9783030306472
dc.identifier.issn16800737
dc.identifier.urihttp://hdl.handle.net/11407/5648
dc.descriptionUnsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups. © 2020, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700831&doi=10.1007%2f978-3-030-30648-9_41&partnerID=40&md5=930b9690370f241ec1412784c1f71f70
dc.sourceIFMBE Proceedings
dc.subjectBiological data
dc.subjectClustering
dc.subjectEntropy
dc.subjectGraph
dc.subjectMetagenomic binning
dc.subjectSpike sorting
dc.subjectBiomedical engineering
dc.subjectBiophysics
dc.subjectEntropy
dc.subjectGraphic methods
dc.subjectMachine learning
dc.subjectUnsupervised learning
dc.subjectBiological data
dc.subjectClustering
dc.subjectGraph
dc.subjectMetagenomic binning
dc.subjectSpike-sorting
dc.subjectSorting
dc.titleAn Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.identifier.doi10.1007/978-3-030-30648-9_41
dc.relation.citationvolume75
dc.relation.citationstartpage315
dc.relation.citationendpage321
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAriza-Jiménez, L., Mathematical Modeling Research Group, Universidad EAFIT, Medellí­n, Colombia; Pinel, N., Biodiversity, Evolution, and Conservation Research Group, Universidad EAFIT, Medellí­n, Colombia; Villa, L.F., System Engineering Research Group, ARKADIUS, Universidad de Medellí­n, Medellí­n, Colombia; Quintero, O.L., Mathematical Modeling Research Group, Universidad EAFIT, Medellí­n, Colombia
dc.relation.referencesVogt, J.E., Unsupervised structure detection in biomedical data (2015) IEEE/ACM Trans. Comput. Biol. Bioinforma., 12 (4), pp. 753-760. , https://doi.org/10.1109/TCBB.2015.2394408
dc.relation.referencesXu, R., Wunsch, D.C., Clustering algorithms in biomedical research: A review (2010) IEEE Rev. Biomed. Eng., 3, pp. 120-154. , https://doi.org/10.1109/RBME.2010.2083647
dc.relation.referencesFortunato, S., Hric, D., Community detection in networks: A user guide (2016) Phys. Rep., 659, pp. 1-44. , https://doi.org/10.1016/j.physrep.2016.09.002
dc.relation.referencesde Arruda, G.F., Costa, L.D.F., Rodrigues, F.A., A complex networks approach for data clustering (2012) Phys. a Stat. Mech. Appl., 391 (23), pp. 6174-6183. , https://doi.org/10.1016/j.physa.2012.07.007
dc.relation.referencesZhang, H., Chen, X., Network-based clustering and embedding for high-dimensional data visualization (2013) 2013 International Conference on Computer-Aided Design and Computer Graphics, pp. 290-297. , https://doi.org/10.1109/CADGraphics.2013.45
dc.relation.referencesGrünwald, P.D., (2007) The Minimum Description Length Principle, , The MIT Press, Cambridge
dc.relation.referencesYao, J., Dash, M., Tan, S.T., Liu, H., Entropy-based fuzzy clustering and fuzzy modeling (2000) Fuzzy Sets Syst, 113 (3), pp. 381-388. , https://doi.org/10.1016/S0165-0114(98)00038-4
dc.relation.referencesLaskaris, N.A., Zafeiriou, S.P., Beyond FCM: Graph-theoretic post-processing algorithms for learning and representing the data structure (2008) Pattern Recognit, 41 (8), pp. 2630-2644. , https://doi.org/10.1016/j.patcog.2008.02.005
dc.relation.referencesBlondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., Fast unfolding of communities in large networks (2008) J. Stat. Mech. Theory Exp., 2008 (10). , https://doi.org/10.1088/1742-5468/2008/10/P10008
dc.relation.referencesLeung, H.C., Yiu, S.M., Yang, B., Peng, Y., Wang, Y., Liu, Z., Chen, J., Chin, F.Y., A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio (2011) Bioinformatics, 27 (11), pp. 1489-1495. , https://doi.org/10.1093/bioinformatics/btr186
dc.relation.referencesCeballos, J., Ariza-Jiménez, L., Pinel, N., Standardized approaches for assessing metagenomic contig binning performance from Barnes-Hut t-Stochastic neighbor embeddings (2020) VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, pp. 761-768. , https://doi.org/10.1007/978-3-030-30648-9101, pp., Springer Nature Switzerland AG
dc.relation.referencesAriza-Jiménez, L., Quintero, O., Pinel, N., Unsupervised fuzzy binning of metagenomic sequence fragments on three-dimensional Barnes-Hut t-Stochastic neighbor embeddings (2018) 40Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1315-1318. , https://doi.org/10.1109/EMBC.2018.8512529
dc.relation.referencesvan der Maaten, L., Accelerating t-SNE using tree-based algorithms (2014) J. Mach. Learn. Res., 15, pp. 3221-3245. , http://jmlr.org/papers/v15/vandermaaten14a.html
dc.relation.referencesChaure, F.J., Rey, H.G., Quian Quiroga, R., A novel and fully automatic spike-sorting implementation with variable number of features (2018) J. Neurophysiol., 120 (4), pp. 1859-1871. , https://doi.org/10.1152/jn.00339.2018
dc.relation.referencesPedreira, C., Martinez, J., Ison, M.J., Quian Quiroga, R., How many neurons can we see with current spike sorting algorithms? (2012) J. Neurosci. Methods, 211 (1), pp. 58-65. , https://doi.org/10.1016/j.jneumeth.2012.07.010
dc.relation.referencesNewman, M.E., Clauset, A., Structure and inference in annotated networks (2016) Nat. Commun., 7 (May), pp. 1-11. , https://doi.org/10.1038/ncomms11863
dc.relation.referencesSharon, I., Morowitz, M.J., Thomas, B.C., Costello, E.K., Relman, D.A., Banfield, J.F., Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization (2013) Genome Res, 23 (1), pp. 111-120. , https://doi.org/10.1101/gr.142315.112s
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem