Show simple item record

dc.creatorMorales G.
dc.creatorCampillo G.
dc.creatorVélez E.
dc.creatorUrquijo J.
dc.creatorHincapié C.
dc.creatorOsorio J.
dc.descriptionThe synthesis of silver nanoparticles (AgNPs) has been increasingly extended due to its potential applications in fields such as optics, environmental, catalysis, electronics and as an antibacterial agent. In this way it is necessary to develop methods framed in green chemistry to achieve greater stability over time of the AgNPs. The present work aims to show the synthesis of AgNPs using Kalanchoe daigremontiana leaf extract, as a reducing and stabilizing agent. UV-vis and transmission electron microscopy (TEM) were used to characterize AgNPs obtained. The absorbance of solutions was measured, evidencing of the formation of AgNPs due to the existence of plasmon resonance at that ?max ? 417 nm. The size distribution and morphology of the AgNPs by TEM shows stable, spherical and nomodispersar nanoparticles with a size between 4 and 12 nm. The measurements were carried out immediately after the synthesis procedure, then the AgNPs solutions were stored at room temperature and darkness by 27 months and it could be corroborated the stabilizing capacity of Kalanchoe daigremontiana leaf extract, since the ?max and the size of particle did not vary significatively in this period of time. © Published under licence by IOP Publishing Ltd.
dc.publisherInstitute of Physics Publishing
dc.sourceJournal of Physics: Conference Series
dc.subjectEngineering research
dc.subjectHigh resolution transmission electron microscopy
dc.subjectMetal nanoparticles
dc.subjectSilver nanoparticles
dc.subjectGreen chemistry
dc.subjectLeaf extracts
dc.subjectPlasmon resonances
dc.subjectSilver nanoparticles (AgNps)
dc.subjectStabilizing agents
dc.subjectSynthesis procedure
dc.subjectSynthesis (chemical)
dc.titleKalanchoe daigremontiana leaf extract: A green stabilizing agent in synthesis of Silver Nanoparticles
dc.typeConference Papereng
dc.publisher.programIngeniería Ambiental
dc.publisher.facultyFacultad de Ciencias Básicas;Facultad de Ingenierías
dc.affiliationMorales, G., Facultad de Ingenierias, Universidad de Medellin, Medellin, Colombia; Campillo, G., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Vélez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Urquijo, J., Facultad de Ingenierias, Universidad de Medellin, Medellin, Colombia; Hincapié, C., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Osorio, J., Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellin, No. 52-21, Colombia
dc.relation.referencesAkter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Kurasaki, M., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives (2018) Journal of Advanced Research, 9, pp. 1-16
dc.relation.referencesGajbhiye, S., Sakharwade, S., Silver Nanoparticles in Cosmetics (2016) Journal of Cosmetics, Dermatological Sciences and Applications, 6 (1), pp. 48-53
dc.relation.referencesVenkatesham, M., Ayodhya, D., Madhusudhan, A., Veera Babu, N., Veerabhadram, G., A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies (2014) Applied Nanoscience, 4 (1), pp. 113-119
dc.relation.referencesHaes, A.J., Zou, S., Schatz, G.C., Van Duyne, R.P., Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles (2004) The Journal of Physical Chemistry B, 108 (22), pp. 6961-6968
dc.relation.referencesBankura, K.P., Maity, D., Mollick, M.M.R., Mondal, D., Bhowmick, B., Bain, M.K., Chakraborty, A., Chattopadhyay, D., Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium (2012) Carbohydrate Polymers, 89 (4), pp. 1159-1165
dc.relation.referencesGloria, E.C., Vélez, E., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Ignacio Uribe, J., Jaramillo, F., Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity (2017) Journal of Physics: Conference Series, 850 (1)
dc.relation.referencesVélez, E., Campillo, G., Morales, G., Hincapié, C., Osorio, J., Arnache, O., Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloe vera Extracts: An Assessment of the Antibacterial Activity and Mercury Removal Capability (2018) Journal of Nanomaterials, 2018, pp. 1-7. , 2018
dc.relation.referencesGardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles (2003) Langmuir, 19 (4), pp. 1357-1361
dc.relation.referencesAhmed, S., Ahmad, M., Swami, B.L., Ikram, S., A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise (2016) Journal of Advanced Research, 7 (1), pp. 17-28
dc.relation.referencesMulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C., Synthesis and Study of Silver Nanoparticles (2007) Journal of Chemical Education, 84 (2), p. 322
dc.relation.referencesKumar, S.V., Bafana, A.P., Pawar, P., Rahman, A., Dahoumane, S.A., Jeffryes, C.S., High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology (2018) Scientific Reports, 8 (1), p. 5106
dc.relation.referencesVyas, J., Rana, S., Biosynthesis of Selenium Nanoparticles Using Aloe Vera Leaf Extract (2018) International Journal of Advanced Research, 6 (1), pp. 104-110
dc.relation.referencesPinto, V.V., Ferreira, M.J., Silva, R., Santos, H.A., Silva, F., Pereira, C.M., Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions (2010) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364 (1-3), pp. 19-25
dc.relation.referencesLink, S., El-Sayed, M.A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals (2000) International Reviews in Physical Chemistry, 19 (3), pp. 409-453
dc.relation.referencesSosa, I.O., Noguez, C., Barrera, R.G., Optical Properties of Metal Nanoparticles with Arbitrary Shapes (2003) The Journal of Physical Chemistry B, 107 (26), pp. 6269-6275
dc.relation.referencesPal, S., Tak, Y.K., Song, J.M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium <em>Escherichia coli</em&gt (2007) Applied and Environmental Microbiology, 73 (6), p. 1712
dc.relation.referencesRamalingam, K., Devasena, T., Senthil, B., Kalpana, R., Jayavel, R., (2017) Silver Nanoparticles for Melamine Detection in Milk Based on Transmitted Light Intensity, pp. 171-178. , (IET Science, Measurement amp
dc.relation.referencesTechnology, Institution of Engineering and Technology)
dc.relation.referencesRasband, B., (1997),, W. S. ImageJ. U.S. National Institutes of Health, Md, USA
dc.relation.referencesBhattacharjee, S., DLS and zeta potential - What they are and what they are not? (2016) J Control Release, 235, pp. 337-351
dc.relation.referencesPavlin, M., Bregar, V.B., Stability of Nanoparticle Suspensions in Different Biologically Relevant Media (2012) Digest Journal of Nanomaterials and Biostructures, 7, pp. 1389-1400

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record