Mostrar el registro sencillo del ítem

dc.creatorAriza-Jiménez L.
dc.creatorVilla L.F.
dc.creatorQuintero O.L.
dc.date2019
dc.date.accessioned2020-04-29T14:53:35Z
dc.date.available2020-04-29T14:53:35Z
dc.identifier.isbn9783030310189
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11407/5662
dc.descriptionVisualizing the cluster structure of high-dimensional data is a non-trivial task that must be able to deal with the large dimensionality of the input data. Unlike hard clustering structures, visualization of fuzzy clusterings is not as straightforward because soft clustering algorithms yield more complex clustering structures. Here is introduced the concept of membership networks, an undirected weighted network constructed based on the fuzzy partition matrix that represents a fuzzy clustering. This simple network-based method allows understanding visually how elements involved in this kind of complex data clustering structures interact with each other, without relying on a visualization of the input data themselves. Experiment results demonstrated the usefulness of the proposed method for the exploration and analysis of clustering structures on the Iris flower data set and two large and unlabeled financial datasets, which describes the financial profile of customers of a local bank. © 2019, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075665935&doi=10.1007%2f978-3-030-31019-6_23&partnerID=40&md5=cc5318918e57cf763413520330bcc88a
dc.sourceCommunications in Computer and Information Science
dc.subjectClustering visualization
dc.subjectFuzzy clustering
dc.subjectHigh-dimensional data
dc.subjectMembership network
dc.subjectCluster analysis
dc.subjectComplex networks
dc.subjectData visualization
dc.subjectFuzzy clustering
dc.subjectInput output programs
dc.subjectLarge dataset
dc.subjectVisualization
dc.subjectCluster structure
dc.subjectFinancial profiles
dc.subjectHard clustering
dc.subjectHigh dimensional data
dc.subjectHigh-dimensional
dc.subjectNon-trivial tasks
dc.subjectSimple networks
dc.subjectWeighted networks
dc.subjectClustering algorithms
dc.titleMemberships Networks for High-Dimensional Fuzzy Clustering Visualization
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.identifier.doi10.1007/978-3-030-31019-6_23
dc.relation.citationvolume1052
dc.relation.citationstartpage263
dc.relation.citationendpage273
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAriza-Jiménez, L., Mathematical Modeling Research Group, Universidad EAFIT, Medellín, Colombia; Villa, L.F., System Engineering Research Group, ARKADIUS, Universidad de Medellín, Medellín, Colombia; Quintero, O.L., Mathematical Modeling Research Group, Universidad EAFIT, Medellín, Colombia
dc.relation.referencesAbonyi, J., Babuska, R., FUZZSAM-visualization of fuzzy clustering results by modified Sammon mapping (2004) IEEE International Conference on Fuzzy Systems, 1, pp. 365-370. , https://doi.org/10.1109/FUZZY.2004.1375750, vol., pp
dc.relation.referencesBécavin, C., Benecke, A., New dimensionality reduction methods for the representation of high dimensional omics data (2011) Expert Rev. Mol. Diagn., 11 (1), pp. 27-34. , https://doi.org/10.1586/erm.10.95
dc.relation.referencesBerthold, M.R., Wiswedel, B., Patterson, D.E., Interactive exploration of fuzzy clusters using neighborgrams (2005) Fuzzy Sets Syst, 149 (1), pp. 21-37. , https://doi.org/10.1016/j.fss.2004.07.009
dc.relation.referencesEveritt, B.S., Landau, S., Leese, M., Stahl, D., (2011) Cluster Analysis, , Wiley, Hoboken
dc.relation.referencesFeil, B., Balasko, B., Abonyi, J., Visualization of fuzzy clusters by fuzzy Sammon mapping projection: Application to the analysis of phase space trajectories (2007) Soft Comput, 11 (5), pp. 479-488. , https://doi.org/10.1007/s00500-006-0111-5
dc.relation.referencesFortunato, S., Hric, D., Community detection in networks: A user guide (2016) Phys. Rep., 659, pp. 1-44. , https://doi.org/10.1016/j.physrep.2016.09.002
dc.relation.referencesFrancalanci, C., Hussain, A., Influence-based Twitter browsing with NavigTweet (2017) Inf. Syst., 64, pp. 119-131. , https://doi.org/10.1016/j.is.2016.07.012
dc.relation.referencesFruchterman, T.M., Reingold, E.M., Graph drawing by force-directed placement (1991) Softw. Pract. Exp., 21 (11), pp. 1129-1164. , https://doi.org/10.1002/spe.4380211102
dc.relation.referencesGajer, P., Goodrich, M.T., Kobourov, S.G., A multi-dimensional approach to force-directed layouts of large graphs (2004) Comput. Geom., 29 (1), pp. 3-18. , https://doi.org/10.1016/j.comgeo.2004.03.014
dc.relation.referencesGibson, H., Faith, J., Vickers, P., A survey of two-dimensional graph layout techniques for information visualisation (2013) Inf. Vis., 12 (3-4), pp. 324-357. , https://doi.org/10.1177/1473871612455749
dc.relation.referencesHeberle, H., Carazzolle, M.F., Telles, G.P., Meirelles, G.V., Minghim, R., Cell NetVis: A web tool for visualization of biological networks using force-directed layout constrained by cellular components (2017) BMC Bioinform, 18. , https://doi.org/10.1186/s12859-017-1787-5
dc.relation.referencesHöppner, F., Klawonn, F., Visualising clusters in high-dimensional data sets by intersecting spheres Proceedings of 2006 International Symposium on Evolving Fuzzy Systems, EFS 2006
dc.relation.referencesHu, Y., Shi, L., Visualizing large graphs (2015) Wiley Interdiscip. Rev. Comput. Stat., 7 (2), pp. 115-136. , https://doi.org/10.1002/wics.1343
dc.relation.referencesIshida, Y., Itoh, T., A force-directed visualization of conversation logs (2017) Proceedings of Computer Graphics International Conference-Cgi 2017, pp. 1-5. , https://doi.org/10.1145/3095140.3095156, pp., ACM Press, New York
dc.relation.referencesJacomy, M., Venturini, T., Heymann, S., Bastian, M., ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software (2014) Plos ONE, 9 (6), pp. 1-12. , https://doi.org/10.1371/journal.pone.0098679
dc.relation.referencesLeisch, F., A toolbox for K-centroids cluster analysis (2006) Comput. Stat. Data Anal., 51 (2), pp. 526-544. , https://doi.org/10.1016/j.csda.2005.10.006
dc.relation.referencesLeisch, F., Neighborhood graphs, stripes and shadow plots for cluster visualization (2010) Stat. Comput., 20 (4), pp. 457-469. , https://doi.org/10.1007/s11222-009-9137-8
dc.relation.referencesvan der Maaten, L., Accelerating t-SNE using tree-based algorithms (2014) J. Mach. Learn. Res., 15, pp. 3221-3245. , http://jmlr.org/papers/v15/vandermaaten14a.html
dc.relation.referencesvan der Maaten, L., Hinton, G., Visualizing high-dimensional data using t-SNE (2008) J. Mach. Learn. Res., 9, pp. 2579-2605. , http://www.jmlr.org/papers/v9/vandermaaten08a.html
dc.relation.referencesMartin, S., Brown, W.M., Klavans, R., Boyack, K.W., OpenOrd: An open-source toolbox for large graph layout (2011) Proceedings of SPIE, P, 7868. , https://doi.org/10.1117/12.871402, January
dc.relation.referencesMetsalu, T., Vilo, J., ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap (2015) Nucleic Acids Res, 43 (W1), pp. W566-W570. , https://doi.org/10.1093/nar/gkv468
dc.relation.referencesNewman, M.E.J., The structure and function of complex networks (2003) SIAM Rev, 45 (2), pp. 167-256. , https://doi.org/10.1137/S003614450342480
dc.relation.referencesPison, G., Struyf, A., Rousseeuw, P.J., Displaying a clustering with CLUSPLOT (1999) Comput. Stat. Data Anal., 30 (4), pp. 381-392. , https://doi.org/10.1016/S0167-9473(98)00102-9
dc.relation.referencesSato-Ilic, M., Ilic, P., Visualization of fuzzy clustering result in metric space (2016) Proc. Comput. Sci., 96, pp. 1666-1675. , https://doi.org/10.1016/j.procs.2016.08.214
dc.relation.referencesSerra, A., Galdi, P., Tagliaferri, R., Machine learning for bioinformatics and neu-roimaging (2018) Wiley Interdisc. Rev.: Data Min. Knowl. Discov, 8 (5), pp. 1-33. , https://doi.org/10.1002/widm.1248
dc.relation.referencesSharko, J., Grinstein, G., Visualizing fuzzy clusters using RadViz (2009) Proceedings of International Conference Information Visualisation, pp. 307-316. , https://doi.org/10.1109/IV.2009.74, pp
dc.relation.referencesWang, K.J., Yan, X.H., Chen, L.F., Geometric double-entity model for recognizing far-near relations of clusters (2011) Sci. China Inf. Sci., 54 (10), pp. 2040-2050. , https://doi.org/10.1007/s11432-011-4386-5
dc.relation.referencesWang, W., Zhang, Y., On fuzzy cluster validity indices (2007) Fuzzy Sets Syst, 158 (19), pp. 2095-2117. , https://doi.org/10.1016/j.fss.2007.03.004
dc.relation.referencesXu, R., Wunsch, D., Survey of clustering algorithms (2005) IEEE Trans. Neural Netw., 16 (3), pp. 645-678. , https://doi.org/10.1109/TNN.2005.845141
dc.relation.referencesXu, R., Wunsch, D.C., Clustering algorithms in biomedical research: A review (2010) IEEE Rev. Biomed. Eng., 3, pp. 120-154. , https://doi.org/10.1109/RBME.2010.2083647
dc.relation.referencesZhou, F., A radviz-based visualization for understanding fuzzy clustering results (2017) Proceedings of 10Th International Symposium on Visual Information Communication and Interaction, pp. 9-15. , https://doi.org/10.1145/3105971.3105980, pp., ACM, New York
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem