REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]

Thumbnail
Share this
Author
Londoño C.E.
Pabón J.O.
TY - GEN T1 - Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] AU - Londoño C.E. AU - Pabón J.O. UR - http://hdl.handle.net/11407/5664 PB - Pontificia Universidad Javeriana AB - Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved. ER - @misc{11407_5664, author = {Londoño C.E. and Pabón J.O.}, title = {Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]}, year = {}, abstract = {Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved.}, url = {http://hdl.handle.net/11407/5664} }RT Generic T1 Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] A1 Londoño C.E. A1 Pabón J.O. LK http://hdl.handle.net/11407/5664 PB Pontificia Universidad Javeriana AB Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved.
URI
http://hdl.handle.net/11407/5664
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com