dc.creator | Arrieta C.E. | |
dc.creator | García A. | |
dc.creator | Cardona A. | |
dc.creator | Bedoya I. | |
dc.creator | Amell A. | |
dc.date | 2019 | |
dc.date.accessioned | 2020-04-29T14:53:36Z | |
dc.date.available | 2020-04-29T14:53:36Z | |
dc.identifier.issn | 17426588 | |
dc.identifier.uri | http://hdl.handle.net/11407/5667 | |
dc.description | Surface-stabilized combustion burners is a promising combustion technique that has been studied for more than a decade. However, in the design stage of these burners is hard to determine if under certain operating conditions the burner would operate adequately. In this paper, we performed a numerical approach to predict the flame stability in a surface-stabilized combustion burner. Here we considered a numerical approach that includes simultaneous solution of mass and energy balance for both, the gas and solid phase, as well as a proper estimation of thermo-chemical and thermo-physical properties. The numerical model was validated against experimental data reported in previous studies. These data involve results with natural gas and the blending of natural gas with three high hydrogen content synthetic gases in equimolar proportions. We evaluated three synthetic gases with high hydrogen contents ranging from 60% H2 to 75% H2. The data also involve thermal power from 300 to 500 kW/m2. The results indicate that the numerical approach described in this work predicts very well the flame stability and temperature profile within the porous media. Therefore, it can be used to study surface-stabilized combustion burners. © Published under licence by IOP Publishing Ltd. | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078054441&doi=10.1088%2f1742-6596%2f1409%2f1%2f012017&partnerID=40&md5=53b3a0d877893e4e721e8f14096b305b | |
dc.source | Journal of Physics: Conference Series | |
dc.subject | Blending | |
dc.subject | Gases | |
dc.subject | Hydrogen | |
dc.subject | Natural gas | |
dc.subject | Numerical models | |
dc.subject | Porous materials | |
dc.subject | Thermodynamic stability | |
dc.subject | Combustion stability | |
dc.subject | Combustion technique | |
dc.subject | Mass and energy balance | |
dc.subject | Numerical approaches | |
dc.subject | Operating condition | |
dc.subject | Simultaneous solution | |
dc.subject | Temperature profiles | |
dc.subject | Thermo-physical property | |
dc.subject | Combustion | |
dc.title | Numerical simulation of the combustion stability of natural gas and syngas in a surface-stabilized combustion burner | |
dc.type | Conference Paper | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería en Energía | |
dc.identifier.doi | 10.1088/1742-6596/1409/1/012017 | |
dc.relation.citationvolume | 1409 | |
dc.relation.citationissue | 1 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Arrieta, C.E., Grupo de Investigación en Energía, Universidad de Medellín, Medellín, Colombia; García, A., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellin, Colombia; Cardona, A., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellin, Colombia, Grupo de Investigación Materiales Avanzados y Energía, Instituto Tecnológico Metropolitano, Medellín, Colombia; Bedoya, I., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellin, Colombia; Amell, A., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellin, Colombia | |
dc.relation.references | Dreizler, A., Bohm, B., (2015) Proc. Combust. Inst., 35 (1), p. 37 | |
dc.relation.references | Strozzi, C., Claverie, A., Prevost, V., Sotton, J., Bellenoue, M., (2019) Combust. Flame, 202, p. 58 | |
dc.relation.references | Echeverri-Uribe, C., Amell, A.A., Experimental evaluation of the surface-stabilized combustion of a confined porous inert media burner (2019) Combust. Sci. Technol., 1 | |
dc.relation.references | Mujeebu, M.A., (2009) Prog. Energy Combust. Sci., 35 (2), p. 216 | |
dc.relation.references | Arrieta, C.E., García, A.M., Amell, A.A., (2017) Int. J. Hydrog. Energy, 42 (17), p. 12669 | |
dc.relation.references | Ismail, A.K., (2018) IOP Conf Ser. Mater. Sci. Eng., 370 | |
dc.relation.references | Bosschaart, K.J., De Goey, L.P.H., (2003) Combust. Flame, 132 (1-2), p. 170 | |
dc.relation.references | Li, B., (2011) Proc. Combust. Inst., 33 (1), p. 939 | |
dc.relation.references | Amell, A., (2013) Estudio de la Combustión en Medios Porosos Del Gas Natural, G.l.p., Biogas y Syngas A Diferentes Altitudes | |
dc.relation.references | Bedoya, C., Dinkov, I., Habisreuther, P., Zarzalis, N., Bockhorn, H., Parthasarathy, P., (2015) Combust. Flame, 162 (10), p. 3740 | |
dc.relation.references | Edacheri Veetil, J., Rajith, C.V., Velamati, R.K., (2016) Int. J. Hydrog. Energy, 41 (31), p. 13747 | |
dc.relation.references | Arrieta, C.E., García, A., Yepes, H.A., Bedoya, I., Amell, A., (2019) J. Phys. Conf. Ser., 1257 (1) | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |