REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parameters for a genetic algorithm: An application for the order batching problem

Thumbnail
Share this
Author
Cano J.A.

Citación

       
TY - GEN T1 - Parameters for a genetic algorithm: An application for the order batching problem AU - Cano J.A. UR - http://hdl.handle.net/11407/5672 PB - IBIMA Publishing AB - This article aims to validate the parameters of a genetic algorithm for the order batching problem (OBP) in warehouses by defining the parameter values offering the best solution performance. Thus, a description of the OBP and the solution approaches based on item-oriented and group-oriented genetic algorithms are introduced. Then, the characteristics of a group-oriented genetic algorithm are shown, and experiments are performed to establish the parameter values related to population size, crossover rate, elitism rate, and mutation rate. Therefore, we provide the set of parameter values for the genetic algorithm offering better quality results in terms of total distance traveled, and some recommendations to reduce the computing time of the algorithm are presented. Copyright © 2019. Jose Alejandro CANO. ER - @misc{11407_5672, author = {Cano J.A.}, title = {Parameters for a genetic algorithm: An application for the order batching problem}, year = {}, abstract = {This article aims to validate the parameters of a genetic algorithm for the order batching problem (OBP) in warehouses by defining the parameter values offering the best solution performance. Thus, a description of the OBP and the solution approaches based on item-oriented and group-oriented genetic algorithms are introduced. Then, the characteristics of a group-oriented genetic algorithm are shown, and experiments are performed to establish the parameter values related to population size, crossover rate, elitism rate, and mutation rate. Therefore, we provide the set of parameter values for the genetic algorithm offering better quality results in terms of total distance traveled, and some recommendations to reduce the computing time of the algorithm are presented. Copyright © 2019. Jose Alejandro CANO.}, url = {http://hdl.handle.net/11407/5672} }RT Generic T1 Parameters for a genetic algorithm: An application for the order batching problem A1 Cano J.A. LK http://hdl.handle.net/11407/5672 PB IBIMA Publishing AB This article aims to validate the parameters of a genetic algorithm for the order batching problem (OBP) in warehouses by defining the parameter values offering the best solution performance. Thus, a description of the OBP and the solution approaches based on item-oriented and group-oriented genetic algorithms are introduced. Then, the characteristics of a group-oriented genetic algorithm are shown, and experiments are performed to establish the parameter values related to population size, crossover rate, elitism rate, and mutation rate. Therefore, we provide the set of parameter values for the genetic algorithm offering better quality results in terms of total distance traveled, and some recommendations to reduce the computing time of the algorithm are presented. Copyright © 2019. Jose Alejandro CANO. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This article aims to validate the parameters of a genetic algorithm for the order batching problem (OBP) in warehouses by defining the parameter values offering the best solution performance. Thus, a description of the OBP and the solution approaches based on item-oriented and group-oriented genetic algorithms are introduced. Then, the characteristics of a group-oriented genetic algorithm are shown, and experiments are performed to establish the parameter values related to population size, crossover rate, elitism rate, and mutation rate. Therefore, we provide the set of parameter values for the genetic algorithm offering better quality results in terms of total distance traveled, and some recommendations to reduce the computing time of the algorithm are presented. Copyright © 2019. Jose Alejandro CANO.
URI
http://hdl.handle.net/11407/5672
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com