Mostrar el registro sencillo del ítem

dc.creatorJimenez-Orozco C.
dc.creatorFlorez E.
dc.creatorMoreno A.
dc.creatorRodriguez J.A.
dc.date2019
dc.date.accessioned2020-04-29T14:53:37Z
dc.date.available2020-04-29T14:53:37Z
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/5674
dc.descriptionThe development of heterogeneous catalysts with activity for the hydrogenation of unsaturated hydrocarbons is of economic importance. Ethylene (C2H4) and acetylene (C2H2) are probe molecules useful to understand the hydrogenation mechanisms, where the most studied surfaces are Pt(111) and Pd(111), however, they have a limited activity due to the formation and accumulation of ethylidyne (CCH3) species. Therefore, alternative catalysts should be developed to limit and/or avoid the formation of ethylidyne on the surface. Transition metal carbides has been reported as alternative catalysts, with the additional advantage of lower prices. The thermodynamics of ethylidyne binding and its transformations on ?-MoC(001), TiC(001), and ?-Mo2C(100) surfaces are studied by means of periodic DFT. The results indicate that ethylidyne could be transformed to ethyl and ethane on ?-MoC(001) and TiC(001) surfaces, which are relevant species to the Horiuti-Polanyi mechanism. Therefore, these surfaces could be an alternative to Pt(111) and Pd(111), since ethylidyne could be transformed to other species, avoiding or limiting their deactivation. Conversely, ethylidyne cannot be transformed to vinyl (CHCH2) or ethylene in a Horiuti-Polanyi-like mechanism; then, it is not thermodynamically feasible to use any of the studied surfaces in the selective hydrogenation of acetylene, since ethylidyne accumulation could poison the surfaces. © Published under licence by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071066082&doi=10.1088%2f1742-6596%2f1247%2f1%2f012003&partnerID=40&md5=0d98609b3957d0f668d6fc367a2b2203
dc.sourceJournal of Physics: Conference Series
dc.subjectAcetylene
dc.subjectCarbides
dc.subjectCatalyst activity
dc.subjectEngineering research
dc.subjectEthylene
dc.subjectHydrogenation
dc.subjectLighting
dc.subjectThermodynamics
dc.subjectTitanium carbide
dc.subjectTransition metals
dc.subjectAlternative catalysts
dc.subjectEconomic importance
dc.subjectHeterogeneous catalyst
dc.subjectPeriodic DFT
dc.subjectProbe molecules
dc.subjectSelective hydrogenation
dc.subjectTransition metal carbide
dc.subjectUnsaturated hydrocarbons
dc.subjectPlatinum compounds
dc.titlePlatinum vs transition metal carbide surfaces as catalysts for olefin and alkyne conversion: Binding and hydrogenation of ethylidyne
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1088/1742-6596/1247/1/012003
dc.relation.citationvolume1247
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationJimenez-Orozco, C., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia, Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Florez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin, Colombia; Moreno, A., Quimica de Recursos Energéticos y Medio Ambiente, Instituto de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, No. 52-21, Colombia; Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesDhandapani, B., Clair, T.St., Oyama, S.T., Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide (1998) Appl. Catal. A Gen., 168 (2), pp. 219-228
dc.relation.referencesLevy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181 (4099), pp. 547-549
dc.relation.referencesHwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chem. Rev., 105 (1), pp. 185-212
dc.relation.referencesOyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, , (Blackie academic amp
dc.relation.referencesprofessional)
dc.relation.referencesHeard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6 (5), pp. 3277-3286
dc.relation.referencesCremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation (1996) J. Am. Chem. Soc., 118 (12), pp. 2942-2949
dc.relation.referencesStudt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K., Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene (2008) Science (80-.), 320 (5881), pp. 1320-1322
dc.relation.referencesDeng, R., Herceg, E., Trenary, M., Formation and hydrogenation of ethylidene on the Pt(111) surface (2004) Surf. Sci., 560 (1-3), pp. L195-L201
dc.relation.referencesShin, E.W., Choi, C.H., Chang, K.S., Na, Y.H., Moon, S.H., Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene (1998) Catal. Today, 44 (1-4), pp. 137-143
dc.relation.referencesBeebe, T.P., Yates, J.T., An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina (1986) J. Am. Chem. Soc., 108 (4), pp. 663-671
dc.relation.referencesBackman, A.L., Masel, R.I., An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt(111) (1991) J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 9 (3), pp. 1789-1792
dc.relation.referencesZaera, F., Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: A surface-science perspective (2013) Phys. Chem. Chem. Phys., 15 (29), p. 11988
dc.relation.referencesZaera, F., Somorjai, G.A., Hydrogenation of ethylene over platinum (111) single-crystal surfaces (1984) J. Am. Chem. Soc., 106 (8), pp. 2288-2293
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on ?-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120 (25), pp. 13531-13540
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene adsorption on ?-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study (2017) Phys. Chem. Chem. Phys., 19 (2), pp. 1571-1579
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and Ethylene Adsorption on a ?-Mo2C(100) Surface: A Periodic DFT Study on the Role of Cand Mo-Terminations for Bonding and Hydrogenation Reactions (2017) J. Phys. Chem. C, 121 (36), pp. 19786-19795
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54 (16), pp. 11169-11186
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59 (3), pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192
dc.relation.referencesZhao, Z., Moskaleva, L.V., Aleksandrov, H.A., Basaran, D., Rösch, N., Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations (2010) J. Phys. Chem. C, 114 (28), pp. 12190-12201
dc.relation.referencesKim, S.K., Shin, J., Moon, S.H., Kim, J., Lee, S.-C., Theoretical Investigation of the Adsorption and C-C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt (2013) J. Phys. Chem. C, 117 (35), pp. 18131-18138
dc.relation.referencesAleksandrov, H.A., Moskaleva, L.V., Zhao, Z.-J., Basaran, D., Chen, Z.-X., Mei, D., Rösch, N., Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study (2012) J. Catal., 285 (1), pp. 187-195
dc.relation.referencesMoskaleva, L.V., Aleksandrov, H.A., Basaran, D., Zhao, Z.-J., Rösch, N., Ethylidyne Formation from Ethylene over Pd(111): Alternative Routes from a Density Functional Study (2009) J. Phys. Chem. C, 113 (34), pp. 15373-15379
dc.relation.referencesFlorez, E., Gomez, T., Rodriguez, J.A., Illas, F., On the dissociation of molecular hydrogen by Au supported on transition metal carbides: Choice of the most active support (2011) Phys. Chem. Chem. Phys., 13 (15), pp. 6865-6871
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic ?-Mo2C and cubic ?-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem