Mostrar el registro sencillo del ítem

dc.creatorArteta C.A.
dc.creatorCarrillo J.
dc.creatorArchbold J.
dc.creatorGaspar D.
dc.creatorPajaro C.
dc.creatorAraujo G.
dc.creatorTorregroza A.
dc.creatorBonett R.
dc.creatorBlandon C.
dc.creatorFernandez-Sola L.R.
dc.creatorCorreal J.F.
dc.creatorMosalam K.M.
dc.date2019
dc.date.accessioned2020-04-29T14:53:40Z
dc.date.available2020-04-29T14:53:40Z
dc.identifier.issn87552930
dc.identifier.urihttp://hdl.handle.net/11407/5686
dc.descriptionThe response of mid-rise reinforced concrete (RC) buildings in Mexico City after the 2017 Puebla Earthquake is assessed through combined field and computational investigation. The Mw 7.1 earthquake damaged more than 500 buildings where most of them are classified as mid-rise RC frames with infill walls. A multinational team from Colombia, Mexico, and the United States was rapidly deployed within a week of the occurrence of the event to investigate the structural and nonstructural damage levels of over 60 RC buildings with 2 12 stories. The results of the study confirmed that older mid-rise structures with limited ductility capacity may have been shaken past their capacity. To elucidate the widespread damage in mid-rise RC framed structures, the post-earthquake reconnaissance effort is complemented with inelastic modeling and simulation of several representative RC framing systems with and without masonry infill walls. It was confirmed that the addition of non-isolated masonry infills significantly impacts the ductility capacity and increases the potential for a soft-story mechanism formation in RC frames originally analyzed and designed to be bare systems. © 2019, Earthquake Engineering Research Institute
dc.language.isoeng
dc.publisherEarthquake Engineering Research Institute
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074544448&doi=10.1193%2f061218EQS144M&partnerID=40&md5=1180bd74aceb3374214606be8b02f09e
dc.sourceEarthquake Spectra
dc.subjectDuctility
dc.subjectEarthquakes
dc.subjectInfill drilling
dc.subjectWalls (structural partitions)
dc.subjectComputational investigation
dc.subjectDuctility capacity
dc.subjectFramed structure
dc.subjectInelastic modeling
dc.subjectNon-structural damage
dc.subjectPost-earthquake reconnaissances
dc.subjectReinforced concrete frame buildings
dc.subjectWidespread damage
dc.subjectReinforced concrete
dc.titleResponse of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
dc.typeRevieweng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.1193/061218EQS144M
dc.relation.citationvolume35
dc.relation.citationissue4
dc.relation.citationstartpage1763
dc.relation.citationendpage1793
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationArteta, C.A., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Carrillo, J., Department of Civil Engineering, Universidad Militar Nueva Granada, Bogotá, Colombia; Archbold, J., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States; Gaspar, D., Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States; Pajaro, C., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Araujo, G., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Torregroza, A., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Bonett, R., Department of Civil and Environmental Engineering, Universidad de Medellín, Medellín, Colombia; Blandon, C., Department of Civil and Environmental Engineering, Escuela de Ingeniería de Antioquia, Medellín, Colombia; Fernandez-Sola, L.R., Department of Materials, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City, Mexico; Correal, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia; Mosalam, K.M., Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States, Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, CA 94720-1710, United States
dc.relation.referencesAbrahamson, N.A., Gregor, N., Addo, K., BCHydro ground motion prediction equations for subduction earthquakes (2016) Earthquake Spectra, 32, pp. 23-44
dc.relation.referencesAncheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.-J., Wooddell, K.E., Donahue, J.L., NGA-West2 database (2014) Earthquake Spectra, 30, pp. 989-1005
dc.relation.referencesArteta, C.A., (2015) Seismic Response Assessment of Thin Boundary Elements of Special Concrete Shear Walls, , Ph.D Thesis, University of California, Berkeley, CA
dc.relation.references(2016) Minimum Design Loads for Buildings and Other Structures, , American Society of Civil Engineers ASCE, ASCE/SEI 7-16, Reston, VA
dc.relation.referencesBommer, J.J., Akkar, S., Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA (2012) Earthquake Spectra, 28, pp. 1-15
dc.relation.referencesCarrillo, J., Hernández-Barrios, H., Rubiano-Fonseca, A., Analysis of the earthquake-resistant design approach for buildings in Mexico, (2014) Ingeniería, Investigación Y Tecnología, 15, pp. 151-162
dc.relation.referencesColeman, J., Spacone, E., Localization issues in force-based frame elements (2001) Journal of Structural Engineering, 127, pp. 1257-1265
dc.relation.referencesCrisafulli, F.J., (1997) Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills, , Ph.D Thesis, University of Canterbury, Christchurch
dc.relation.referencesCrisafulli, F.J., Carr, A.J., Park, R., Experimental response of framed masonry structures designed with new reinforcing details (2005) Bulletin of the New Zealand Society for Earthquake Engineering, 38, pp. 19-32
dc.relation.referencesChávez-García, F.J., Bard, P.-Y., Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes (1994) Soil Dynamics and Earthquake Engineering, 13, pp. 229-247
dc.relation.referencesChopra, A.K., Goel, R.K., A modal pushover analysis procedure for estimating seismic demands for buildings (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 561-582
dc.relation.referencesChrysostomou, C.Z., Gergely, P., Abel, J.F., A six-strut model for nonlinear dynamic analysis of steel infilled frames (2002) International Journal of Structural Stability and Dynamics, 2, pp. 335-353
dc.relation.references(1998) European Macroseismic Scale 1998, , European Seismological Commission ESC, Luxembourg
dc.relation.references(2009) Quantification of Building Seismic Performance Factors, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P695, Washington, DC
dc.relation.references(2015) NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P1050-1, Washington, DC
dc.relation.referencesGarcia, D., Singh, S., Herráiz, M., Ordaz, M.G., Pacheco, J., Inslab earthquakes of Central Mexico: Peak ground-motion parameters and response spectra (2005) Bulletin of the Seismological Society of America, 95, pp. 2272-2282
dc.relation.references(2014) Report on the SARA Exposure and Vulnerability Workshop in Medellin Colombia, , Global Earthquake Model GEM, GEM Foundation, Pavia, Italy
dc.relation.references(2016) How Exposed Is South America to Earthquakes?, , Global Earthquake Model GEM, Pavia, Italy
dc.relation.referencesGulkan, P., Sozen, M.A., Procedure for determining seismic vulnerability of building structures (1999) Structural Journal, 96
dc.relation.referencesHan-Seon, L., Sung-Woo, W., Effect of masonry infills on seismic performance of a 3-storey R/C frame with non-seismic detailing (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 353-378
dc.relation.referencesHashemi, A., Mosalam, K.M., Shake-table experiment on reinforced concrete structure containing masonry infill wall (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 1827-1852
dc.relation.referencesJansen, D.C., Shah, S.P., Effect of length on compressive strain softening of concrete (1997) Journal of Engineering Mechanics, 123, pp. 25-35
dc.relation.referencesKramer, S.L., (1996) Geotechnical Earthquake Engineering, , Pearson, Upper Saddle River, NJ
dc.relation.referencesMayoral, J.M., Hutchinson, T.C., Franke, K.W., (2017) Geotechnical Engineering Reconnaissance of the 19 September 2017 Mw 7.1 Puebla-Mexico City Earthquake, , Version 2.0, Tech. Rep. GEER-055A, Geotechnical Extreme Events Reconnaissance Association
dc.relation.referencesMazzoni, S., McKenna, F., Fenves, G.L., Steel02 & hysteretic Material behavior (2007) OpenSees Comparison of Modelling Tools, , Pacific Earthquake Engineering Research Center, Berkeley, CA
dc.relation.referencesMcKenna, F., Fenves, G.L., Scott, M.H., Jeremic, B., (2000) Open System for Earthquake Engineering Simulation (OpenSees), Version 2.4.3.,, , http://opensees.berkeley.edu/, software
dc.relation.referencesMehrabi, A.B., Benson Shing, P., Schuller, M.P., Noland, J.L., Experimental evaluation of masonry-infilled RC frames (1996) Journal of Structural Engineering, 122, pp. 228-237
dc.relation.referencesMeli, R., (1994) Structural Design of Masonry Buildings: The Mexican Practice, 147, pp. 239-262. , American Concrete Institute, ACI Special Publication
dc.relation.references(2017) Resumen Preliminar De Daños De Los Inmuebles Inspeccionados Por Las Brigadas Del CICM Del Sismo Del 19/09/2017, , Mexican School of Civil Engineers CICM, Mexico City, Mexico
dc.relation.referencesMosalam, K.M., Günay, S., Progressive collapse analysis of reinforced concrete frames with unreinforced masonry infill walls considering in-plane/out-of-plane interaction (2015) Earthquake Spectra, 31, pp. 921-943
dc.relation.referencesMuriá, D., González, R., Dynamic properties of building in Mexico City (1995) Ingeniería Sísmica, 351, pp. 24-45
dc.relation.references(2017) Parámetros Del Movimiento Del Suelo Sismo De Puebla-Morelos (Mw 7.1), , National Autonomous University of Mexico UNAM, de septiembre de 2017, Mexico City, Mexico
dc.relation.references(1976) Normas Tecnicas Complementarias para Diseño Y Construcción De Estructuras De Concreto, , NTC-C, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
dc.relation.references(1976) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
dc.relation.references(2004) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
dc.relation.references(2012) Industria De La Construcción - Mampostería - Bloques, Tabiques O Ladrillos Y Tabicones para Uso Estructural Especificaciones Y Métodos De Ensayo, , ONNCE, NMX-C-404ONNCCE-2012, Mexico City, Mexico
dc.relation.referencesOrdaz, M., Miranda, E., Avilés, J., Propuesta de espectros de diseño por sismo para el DF (2003) Revista Internacional De Ingeniería De Estructuras, 8, pp. 189-207
dc.relation.referencesReinoso, E., Jaimes, M.A., Torres, M.A., Evaluation of building code compliance in Mexico City: Mid-rise dwellings AU Reinoso, Eduardo (2016) Building Research & Information, 44, pp. 202-213
dc.relation.referencesRuiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of existing structures (2003) Earthquake Engineering & Structural Dynamics, 32, pp. 1237-1258
dc.relation.referencesRuiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of structures built on soft soil sites (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 679-694
dc.relation.referencesSahakian, V.J., Melgar, D., Quintanar, L., Ramírez-Guzmán, L., Pérez-Campos, X., Baltay, A., Ground motions from the 7 and 19 September 2017 Tehuantepec and Puebla-Morelos, Mexico, Earthquakes (2018) Bulletin of the Seismological Society of America, 108, pp. 3300-3312
dc.relation.referencesSaiidi, M., Sozen, M.A., Simple nonlinear seismic analysis of R/C structures (1981) Journal of the Structural Division, 107, pp. 937-953
dc.relation.referencesScott, M., Filippou, F.C., (2016) Hysteretic Material, , http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material, last accessed 16 November 2018
dc.relation.referencesSpacone, E., Filippou, F.C., Taucer, F.F., Fibre beam-column model for non-linear analysis of R/C frame: Part I. Formulation (1996) Earthquake Engineering and Structural Dynamics, 25, pp. 711-725
dc.relation.referencesTakeda, T., Sozen, M.A., Nielsen, N.N., Reinforced concrete response to simulated earthquakes (1970) Journal of the Structural Division, 96, pp. 2557-2573
dc.relation.references(2017) Updated Finite Fault Results for the Sep 19, 2017 Mw 7.1 Earthquake, , https://earthquake.usgs.gov/archive/product/finite-fault/us2000ar20/us/1506135689560/2000ar20.html, version 2), last accessed 12 April 2018
dc.relation.referencesWittmann, F., Rokugo, K., Brühwiler, E., Mihashi, H., Simonin, P., Fracture energy and strain softening of concrete as determined by means of compact tension specimens (1988) Materials and Structures, 21, pp. 21-32
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem