Show simple item record

dc.creatorRodríguez-Patiño D.F.
dc.creatorRamírez S.
dc.creatorSalcedo-Gallo J.S.
dc.creatorHoyos J.H.
dc.creatorRestrepo-Parra E.
dc.descriptionWe provide a guide to implementing the particle-in-cell algorithm, which is useful for simulating diverse phenomena in plasmas. We focus on two-dimensional systems which have vector fields with three Cartesian components but depend only on two spatial coordinates. We describe the algorithm in detail, including particle-to-grid interpolation, the fast Fourier transform, the Boris algorithm, and the use of dimensionless units. As an example, we discuss a simulation of the two-stream instability, which occurs in a plasma system composed of two counter-streaming electrons and an ion background at rest. © 2020 American Association of Physics Teachers.
dc.publisherAmerican Association of Physics Teachers
dc.sourceAmerican Journal of Physics
dc.titleImplementation of the two-dimensional electrostatic particle-in-cell method
dc.publisher.programFacultad de Ciencias Básicas
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRodríguez-Patiño, D.F., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Ramírez, S., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Salcedo-Gallo, J.S., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Hoyos, J.H., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Restrepo-Parra, E., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia
dc.relation.referencesChen, F.F., (1984) Introduction to Plasma Physics and Controlled Fusion, , Springer, New York
dc.relation.referencesHavlí?ková, E., Fluid model of plasma and computational methods for solution (2006) WDS'06 Proceedings of Contributed Papers, Part III (4), pp. 180-186. , Prague, Czech Republic
dc.relation.referencesHowes, G.G., Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas (2009) Nonlinear Processes Geophys., 16 (2), pp. 219-232
dc.relation.referencesDendy, R.O., (1990) Plasma Dynamics, , Oxford U. P., Oxford, UK
dc.relation.referencesPiel, A., (2010) Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas, , Springer, New York
dc.relation.referencesVerboncoeur, J.P., Particle simulation of plasmas: Review and advances (2005) Plasma Phys. Controlled Fusion, 47, pp. A231-A260
dc.relation.referencesBirdsall, C.K., Langdon, A.B., (2004) Plasma Physics Via Computer Simulation, , Taylor & Francis, Oxfordshire, UK
dc.relation.referencesPritchett, P.L., Particle-in-cell simulation of plasmas - A tutorial (2003) Space Plasma Simulation, 615, pp. 1-24. , edited by C. T. Büchner, Jörg Scholer, and Manfred Dum, Lecture Notes in Physics (Springer, New York)
dc.relation.referencesBenedetti, C., Sgattoni, A., Turchetti, G., Londrillo, P., ALaDyn: A high-accuracy PIC code for the Maxwell-Vlasov equations (2008) IEEE Trans. Plasma Sci., 36 (4), pp. 1790-1798
dc.relation.referencesMartins, S.F., Fonseca, R.A., Vieira, J., Silva, L.O., Lu, W., Mori, W.B., Modeling laser Wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames (2010) Phys. Plasmas, 17
dc.relation.referencesKlimo, O., Weber, S., Tikhonchuk, V.T., Limpouch, J., Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario (2010) Plasma Phys. Controlled Fusion, 52 (5)
dc.relation.referencesDerouillat, J., Beck, A., Pérez, F., Vinci, T., Chiaramello, M., Grassi, A., Flé, M., Grech, M., SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation (2018) Comput. Phys. Commun., 222, pp. 351-373
dc.relation.references, UCLA Plasma Simulation Group
dc.relation.referencesEllis, I.N., Strozzi, D.J., Winjum, B.J., Tsung, F.S., Grismayer, T., Mori, W.B., Fahlen, J.E., Williams, E.A., Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas (2012) Phys. Plasmas, 19
dc.relation.referencesYan, R., Ren, C., Li, J., Maximov, A.V., Mori, W.B., Sheng, Z.-M., Tsung, F.S., Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion (2012) Phys. Rev. Lett., 108
dc.relation.referencesMozer, F.S., Pritchett, P.L., Magnetic field reconnection: A first-principles perspective (2010) Phys. Today, 63 (6), pp. 34-39
dc.relation.referencesPritchett, P.L., Coroniti, F.V., A kinetic ballooning/interchange instability in the magnetotail (2010) J. Geophys. Res.: Space Phys., 15, pp. 1-11. ,
dc.relation.referencesVieira, J., Martins, J.L., Pathak, V.B., Fonseca, R.A., Mori, W.B., Silva, L.O., Magnetically assisted self-injection and radiation generation for plasma-based acceleration (2012) Plasma Phys. Controlled Fusion, 54
dc.relation.referencesVieira, J., Fonseca, R.A., Mori, W.B., Silva, L.O., Ion motion in self-modulated plasma Wakefield accelerators (2012) Phys. Rev. Lett., 109
dc.relation.referencesKimura, W.D., Milchberg, H.M., Muggli, P., Li, X., Mori, W.B., Hollow plasma channel for positron plasma Wakefield acceleration (2011) Phys. Rev. Spec. Top. - Accel. Beams, 14
dc.relation.referencesVerleye, B., Henri, P., Wuyts, R., Lapenta, G., Meerbergen, K., Implementation of a 2D electrostatic particle-in-cell algorithm in unified parallel C with dynamic load-balancing (2013) Comput. Fluids, 80 (1), pp. 10-16
dc.relation.referencesWolf, E.M., Causley, M., Christlieb, A., Bettencourt, M., A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver (2016) J. Comput. Phys., 326, pp. 342-372
dc.relation.referencesTajima, T., Clark, A., Craddock, G.G., Gilden, D.L., Leung, W.K., Li, Y.M., Robertson, J.A., Saltzman, B.J., Particle simulation of plasmas and stellar systems (1985) Am. J. Phys., 53, pp. 365-370
dc.relation.references, PiCM-cpp
dc.relation.referencesMiyake, T., Omura, Y., Matsumoto, H., Kojima, H., Two-dimensional computer simulations of electrostatic solitary waves observed by Geotail spacecraft (1998) J. Geophys. Res., 103, pp. 11841-11850. ,
dc.relation.referencesOlson, J., Miloch, W.J., Ratynskaia, S., Yaroshenko, V., Potential structure around the Cassini spacecraft near the orbit of Enceladus (2010) Phys. Plasmas, 17
dc.relation.referencesBlandón, J., Grisales, J., Riascos, H., Electrostatic plasma simulation by particle-in-cell method using ANACONDA package (2017) J. Phys.: Conf. Ser., 850. , in
dc.relation.referencesDehnen, W., Read, J.I., N-body simulations of gravitational dynamics (2011) Eur. Phys. J. Plus, 126, p. 55
dc.relation.referencesAggarwal, S., Two-stream instability in plasmas with arbitrary (1979) Astrophys. Space Sci., 66, pp. 341-348
dc.relation.referencesUmeda, T., Omura, Y., Miyake, T., Matsumoto, H., Ashour-Abdalla, M., Nonlinear evolution of the electron two-stream instability: Two-dimensional particle simulations (2006) J. Geophys. Res.: Space Phys., 111 (10), pp. 1-9. ,
dc.relation.referencesForslund, D.W., Fundamentals of plasma simulation (1985) Space Sci. Rev., 42 (1-2), pp. 3-16
dc.relation.referencesWeisstein, E.W., Discrete Fourier Transform, ,
dc.relation.referencesBoris, J.P., (1970) Acceleration Calculation from A Scalar Potential, , Report No. MATT-769 (Plasma Physics Laboratory, Princeton University)
dc.relation.referencesQin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.M., Why is Boris algorithm so good? (2013) Phys. Plasmas, 20 (8)
dc.relation.referencesBoozer, A.D., Simulating a one-dimensional plasma (2010) Am. J. Phys., 78 (6), pp. 580-584
dc.relation.referencesHutchinson, I.H., Electron holes in phase space: What they are and why they matter (2017) Phys. Plasmas, 24
dc.relation.referencesGhorbanalilu, M., Abdollahzadeh, E., Rahbari, S.H., Particle-in-cell simulation of two stream instability in the non-extensive statistics (2014) Laser Part. Beams, 32 (3), pp. 399-407
dc.relation.referencesWu, M., Lu, Q., Zhu, J., Du, A., Wang, S., The magnetic structures of electron phase-space holes formed in the electron two-stream instability (2012) Astrophys. Space Sci., 338 (1), pp. 81-85
dc.relation.referencesMingyu, W., Quanming, L., Jie, Z., Peiran, W., Shui, W., Wu, M., Lu, Q., Wang, S., Electromagnetic particle-in-cell simulations of electron holes formed during the electron two-stream instability (2013) Plasma Sci. Technol., 15 (1), pp. 17-24
dc.relation.references, PiCM-cpWiki
dc.relation.referencesEngel, A.V., Cozens, J.R., Flame plasmas (1965) Advances in Electronics and Electron Physics, 20, pp. 99-146. , edited by L. L. Marton (Academic Press, Massachusetts)
dc.relation.referencesSturrock, P.A., Excitation of plasma oscillations (1960) Phys. Rev., 117, pp. 1426-1429
dc.relation.referencesHasegawa, A., Theory of longitudinal plasma instabilities (1968) Phys. Rev., 169, pp. 204-214
dc.relation.referencesKumar, A., Shukla, C., Das, A., Kaw, P., Energy principle for excitations in plasmas with counterstreaming electron flows (2018) AIP Adv., 8
dc.relation.referencesAnderson, D., Fedele, R., Lisak, M., A tutorial presentation of the two stream instability and Landau damping (2001) Am. J. Phys., 69 (12), pp. 1262-1266
dc.relation.referencesBoyd, T.J.M., Sanderson, J.J., (2003) The Physics of Plasmas, , Cambridge U. P., Cambridge, UK
dc.relation.referencesTomori, A., Plasma dispersion relation and instabilities in electron velocity distribution function (2014) WDS'14 Proceedings of Contributed Papers-Physics, pp. 298-303. , Prague, Czech Republic
dc.relation.referencesMatsumoto, H., Omura, Y., Particle simulation of electromagnetic waves and its application to space plasmas (1985) Computer Simulation of Space Plasmas (A86-21759 08-75), pp. 3-41. , edited by H. Matsumoto and T. Sato (Reidel Publishing, Dordrecht, Netherlands)
dc.relation.referencesOmura, Y., Matsumoto, H., Miyake, T., Kojima, H., Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail (1996) J. Geophys. Res.: Space Phys., 101 (A2), pp. 2685-2697. ,

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record