REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Technical and environmental assessment for soil stabilization using coal ash

Thumbnail
Share this
Author
Gómez D.
Carvajal G.
Balaguera A.
Arias Y.P.
TY - GEN T1 - Technical and environmental assessment for soil stabilization using coal ash AU - Gómez D. AU - Carvajal G. AU - Balaguera A. AU - Arias Y.P. UR - http://hdl.handle.net/11407/5697 PB - ISEC Press AB - In most Latin American countries, low-volume roads are composed of unpaved roads; this is considered a problem of economic, social and environmental interest. There are different stabilization alternatives for this type of roads with traditional materials, i.e., Portland cement (OPC) and lime (L), both of which have a high environmental impact due to anthropogenic CO2 emissions. This paper presents the results of the environmental assessment of an industrial residue Coal Ash (CA) with pozzolanic characteristics. The residue was alkaline activated with Ca(OH)2 from commercial lime (L). The binary system (CA+L) is called (CLM) and forms a material with cementing properties, and when it is mixed with soil, it increases the capacity to support loads. The CLM as a soil stabilizer is proposed along with the modification of some construction processes associated with lime technology and Portland cement. Finally, a technical and environmental comparison is made for conventional stabilizers and the binary system CLM. The results showed that stabilization of a silty soil with CLM can achieve a reduction of 58% and 75% in CO2 emissions when compared with L and OPC, respectively. Copyright © 2019 ISEC Press. ER - @misc{11407_5697, author = {Gómez D. and Carvajal G. and Balaguera A. and Arias Y.P.}, title = {Technical and environmental assessment for soil stabilization using coal ash}, year = {}, abstract = {In most Latin American countries, low-volume roads are composed of unpaved roads; this is considered a problem of economic, social and environmental interest. There are different stabilization alternatives for this type of roads with traditional materials, i.e., Portland cement (OPC) and lime (L), both of which have a high environmental impact due to anthropogenic CO2 emissions. This paper presents the results of the environmental assessment of an industrial residue Coal Ash (CA) with pozzolanic characteristics. The residue was alkaline activated with Ca(OH)2 from commercial lime (L). The binary system (CA+L) is called (CLM) and forms a material with cementing properties, and when it is mixed with soil, it increases the capacity to support loads. The CLM as a soil stabilizer is proposed along with the modification of some construction processes associated with lime technology and Portland cement. Finally, a technical and environmental comparison is made for conventional stabilizers and the binary system CLM. The results showed that stabilization of a silty soil with CLM can achieve a reduction of 58% and 75% in CO2 emissions when compared with L and OPC, respectively. Copyright © 2019 ISEC Press.}, url = {http://hdl.handle.net/11407/5697} }RT Generic T1 Technical and environmental assessment for soil stabilization using coal ash A1 Gómez D. A1 Carvajal G. A1 Balaguera A. A1 Arias Y.P. LK http://hdl.handle.net/11407/5697 PB ISEC Press AB In most Latin American countries, low-volume roads are composed of unpaved roads; this is considered a problem of economic, social and environmental interest. There are different stabilization alternatives for this type of roads with traditional materials, i.e., Portland cement (OPC) and lime (L), both of which have a high environmental impact due to anthropogenic CO2 emissions. This paper presents the results of the environmental assessment of an industrial residue Coal Ash (CA) with pozzolanic characteristics. The residue was alkaline activated with Ca(OH)2 from commercial lime (L). The binary system (CA+L) is called (CLM) and forms a material with cementing properties, and when it is mixed with soil, it increases the capacity to support loads. The CLM as a soil stabilizer is proposed along with the modification of some construction processes associated with lime technology and Portland cement. Finally, a technical and environmental comparison is made for conventional stabilizers and the binary system CLM. The results showed that stabilization of a silty soil with CLM can achieve a reduction of 58% and 75% in CO2 emissions when compared with L and OPC, respectively. Copyright © 2019 ISEC Press. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In most Latin American countries, low-volume roads are composed of unpaved roads; this is considered a problem of economic, social and environmental interest. There are different stabilization alternatives for this type of roads with traditional materials, i.e., Portland cement (OPC) and lime (L), both of which have a high environmental impact due to anthropogenic CO2 emissions. This paper presents the results of the environmental assessment of an industrial residue Coal Ash (CA) with pozzolanic characteristics. The residue was alkaline activated with Ca(OH)2 from commercial lime (L). The binary system (CA+L) is called (CLM) and forms a material with cementing properties, and when it is mixed with soil, it increases the capacity to support loads. The CLM as a soil stabilizer is proposed along with the modification of some construction processes associated with lime technology and Portland cement. Finally, a technical and environmental comparison is made for conventional stabilizers and the binary system CLM. The results showed that stabilization of a silty soil with CLM can achieve a reduction of 58% and 75% in CO2 emissions when compared with L and OPC, respectively. Copyright © 2019 ISEC Press.
URI
http://hdl.handle.net/11407/5697
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com