Mostrar el registro sencillo del ítem

dc.creatorVélez Márquez M.I.
dc.creatorRaymond J.
dc.creatorBlessent D.
dc.creatorPhilippe M.
dc.date2019
dc.date.accessioned2020-04-29T14:53:42Z
dc.date.available2020-04-29T14:53:42Z
dc.identifier.issn14747065
dc.identifier.urihttp://hdl.handle.net/11407/5699
dc.descriptionThe terrestrial heat flux density, an essential information to evaluate the deep geothermal resource potential, is rarely defined over urban areas where energy needs are important. In an effort to fill this gap, the subsurface thermal conductivity estimated during two thermal response tests was coupled with undisturbed temperature profile measurements conducted in the same boreholes to infer terrestrial heat flow near the surface. The undisturbed temperature profiles were reproduced with an inverse numerical model of conductive heat transfer, where the optimization of the model bottom boundary condition allows determining the near-surface heat flow. The inverse numerical simulation approach was previously validated by optimizing a steady-state and synthetic temperature profile calculated with Fourier's Law. Data from two thermal response tests in ground heat exchangers of one hundred meters depth were analyzed with inverse numerical simulations provided as examples for the town of Québec City, Canada, and Orléans, France. The temperature profiles measured at the sites and corrected according to the paleoclimate effects of the quaternary glaciations were reproduced with the model. The approach presented offers an alternative to assess heat flow in the preliminary exploration of deep geothermal resources of urban areas, where thermal response tests may be common while deep wells are sparsely distributed over the area to assess heat flow. © 2019 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069710860&doi=10.1016%2fj.pce.2019.07.002&partnerID=40&md5=e61d9d1ef6a2a5719bda18b99cf1b182
dc.sourcePhysics and Chemistry of the Earth
dc.subjectGeothermal
dc.subjectHeat flow
dc.subjectPaleoclimate
dc.subjectTemperature profile
dc.subjectThermal conductivity
dc.subjectThermal response test
dc.subjectGeophysics
dc.subjectGeothermal fields
dc.subjectGlacial geology
dc.subjectHeat exchangers
dc.subjectHeat flux
dc.subjectHeat transfer
dc.subjectNumerical models
dc.subjectTemperature control
dc.subjectTesting
dc.subjectBottom boundary conditions
dc.subjectConductive heat transfer
dc.subjectGeothermal
dc.subjectGround heat exchangers
dc.subjectNumerical simulation approaches
dc.subjectPaleoclimates
dc.subjectTemperature profiles
dc.subjectThermal response test
dc.subjectThermal conductivity
dc.titleTerrestrial heat flow evaluation from thermal response tests combined with temperature profiling
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental;Ingeniería en Energía
dc.identifier.doi10.1016/j.pce.2019.07.002
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationVélez Márquez, M.I., Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Qc, Canada; Raymond, J., Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Qc, Canada; Blessent, D., Programa de Ingeniería Ambiental, Universidad de Medellín, Carrera 87 N° 30 65, Medellín, Colombia; Philippe, M., Georesources Division, BRGM, 3 avenue Claude Guillemin, BP 36009, Orléans Cedex 2, 45060, France
dc.relation.referencesAllis, R.G., The effect of Pleistocene climatic variations on the geothermal regime in Ontario: a reassessment (1978) Can. J. Earth Sci., 16 (7), p. 1517
dc.relation.referencesAziz, A.K., Monk, P., Continuous finite elements in space and time for the heat equation (1989) Math. Comput., 52 (186), pp. 255-274
dc.relation.referencesBédard, K., Comeau, F.A., Raymond, J., Gloaguen, E., Comeau, G., Millet, E., Foy, S., Cartographie de la conductivité thermique des Basses-Terres du Saint-Laurent. Rapport de recherche (R1789) (2018), INRS, Centre Eau Terre Environnement Québec
dc.relation.referencesBédard, K., Comeau, F.A., Raymond, J., Malo, M., Nasr, M., Geothermal characterization of the St. Lawrence Lowlands sedimentary basin, Québec, Canada (2017) Nat. Resour. Res., , 10.1007/s11053-017-9363-2
dc.relation.referencesBédard, K., Raymond, J., Malo, M., Konstantinovskaya, E., Minea, V., St. Lawrence Lowlands bottom-hole temperature: various correction methods (2014) GRC Trans., 38, pp. 351-355
dc.relation.referencesBédard, K., Comeau, F.A., Malo, M., Capacité effective de stockage géologique du CO2 dans le bassin des Basses-Terres du Saint-Laurent (No. INRSCO2 2012 V3.1) (2012), Institut national de la recherche scientifique - Centre Eau Terre Environnement Québec, Canada
dc.relation.referencesBeck, A.E., Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means (1977) Tectonophysics, 41 (1), pp. 17-39
dc.relation.referencesBodri, L., Cermak, V., CHAPTER 2 - climate change and subsurface temperature (2007) Borehole Climatology, pp. 37-173. , Elsevier Oxford
dc.relation.referencesCOMSOL, A.B., COMSOL Multiphysics Reference Manual. Stockholm (2016)
dc.relation.referencesCOMSOL, A.B., Optimization Module User's Guide, Version 4.4. Stockholm (2013)
dc.relation.referencesConn, A.R., Scheinberg, K., Vicente, L.N., (2009) Introduction to Derivative-free Optimization, 8. , Siam Philadelfia
dc.relation.referencesDabral, V., Kapoor, S., Dhawan, S., Numerical simulation of one dimensional heat equation: B-spline finite element method (2011) Indian J. Comput. Sci. Eng. (IJCSE), 2, pp. 222-235
dc.relation.referencesDavies, J.H., Global map of solid Earth surface heat flow (2013) Geochem. Geophys. Geosyst., 14 (10), pp. 4608-4622
dc.relation.referencesFou, T.-K.J., Thermal Conductivity and Heat Flow at St. Jerôme, Quebec (1969), (M.Sc. Thesis) McGill University Montreal, Canada
dc.relation.referencesGolovanova, I.V., Sal'manova, R.Y., Tagirova, C.D., Method for deep temperature estimation with regard to the paleoclimate influence on heat flow (2014) Russ. Geol. Geophys., 55 (9), pp. 1130-1137
dc.relation.referencesHartmann, A., Rath, V., Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs (2005) J. Geophys. Eng., 2 (4), p. 299
dc.relation.referencesJessop, A.M., (1990) Chapter 3 - Analysis and Correction of Heat Flow on Land. Thermal Geophysics, 17, pp. 57-85. , Elsevier Amsterdam
dc.relation.referencesMajorowicz, J.A., Minea, V., Geothermal energy potential in the St-Lawrence river area, Québec (2012) Geothermics, 43, pp. 25-36
dc.relation.referencesMajorowicz, J., Wybraniec, S., New terrestrial heat flow map of Europe after regional paleoclimatic correction application (2011) Int. J. Earth Sci., 100 (4), pp. 881-887
dc.relation.referencesMajorowicz, J., afanda, J., Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km-deep well Torun-1 (2008) Int. J. Earth Sci., 97 (2), pp. 307-315
dc.relation.referencesMareschal, J.C., Jaupart, C., Variations of surface heat flow and lithospheric thermal structure beneath the North American craton (2004) Earth Planet. Sci. Lett., 223 (1), pp. 65-77
dc.relation.referencesMareschal, J.C., Jaupart, C., Gariépy, C., Cheng, L.Z., Guillou-Frottier, L., Bienfait, G., Lapointe, R., Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield (2000) Can. J. Earth Sci., 37 (2-3), pp. 399-414
dc.relation.referencesOuzzane, M., Eslami-Nejad, P., Badache, M., Aidoun, Z., New correlations for the prediction of the undisturbed ground temperature (2015) Geothermics, 53, pp. 379-384
dc.relation.referencesRaymond, J., Lamarche, L., Malo, M., Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers (2016) Renew. Energy, 99, pp. 614-621
dc.relation.referencesRaymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444
dc.relation.referencesSanner, B., Hellström, G., Spitler, J., Gehlin, S., More than 15 Years of Mobile Thermal Response Test A Summary of Experiences and Prospects (2013), European Geothermal Congress Pisa
dc.relation.referencesSass, J.H., Beardsmore, G., Heat Flow Measurements, Continental. Encyclopedia of Solid Earth Geophysics (2011), pp. 569-573. , Springer Dordrecht
dc.relation.referencesDonnées thermiques (flux de chaleur et température) (2007), http://sigminesfrance.brgm.fr/geophy_flux.asp, Bureau de recherches géologiques et minières Orléans
dc.relation.referencesSaull, V.A., Clark, T.H., Doig, R.P., Butler, R.B., Terrestrial heat flow in the St. Lawrence Lowland of Québec (1962) Can. Min. Metall. Bull., 65, pp. 63-66
dc.relation.referencesVelez-Marquez, M.I., Raymond, J., Blessent, D., Philippe, M., Simon, N., Bour, O., Lamarche, L., Distributed thermal response tests using a heating cable and fiber optic temperature sensing (2018) Energies, 11 (11), p. 3059
dc.relation.referencesWestaway, R., Younger, P.L., Accounting for paleoclimate and topography: a rigorous approach to correction of the British geothermal dataset (2013) Geothermics, 48, pp. 31-51
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem