Mostrar el registro sencillo del ítem

dc.creatorUgarte J.P.
dc.creatorTobon C.
dc.creatorPalacio L.C.
dc.creatorAndrade-Caicedo H.
dc.creatorSaiz J.
dc.date2018
dc.date.accessioned2020-04-29T14:53:46Z
dc.date.available2020-04-29T14:53:46Z
dc.identifier.isbn9781728109589
dc.identifier.issn23258861
dc.identifier.urihttp://hdl.handle.net/11407/5721
dc.descriptionBackground: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both, structural and electrical influence on the propagation, using a fractional diffusion model. Methods: The Courtemanche model of human atrial cell is implemented under chronic atrial fibrillation (AF) remodeling conditions. The atrial strands are designed as 1D domains, having a fibrotic portion localized in the middle. Fibrosis is modeled taking into account an electrical component, implemented by coupling a number of fibroblasts to a single cardiomyocyte, and a structural component, implemented through a q-order fractional derivative. Results: The variations of q define two dAPD dispersion regimes. For q < 1.4, the fibrosis density and the number of fibroblast per cardiomyocyte do not alter the dAPD. For q ? 1.4, the dAPD depends on the fibrosis spatial characteristics. Conclusion: This study shows that the structural component of fibrosis, modeled using fractional diffusion, modulates the spatial dAPD in a domain including electrical coupling of cardiomyocytes and fibroblasts, under chronic AF conditions. © 2018 Creative Commons Attribution.
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068799331&doi=10.22489%2fCinC.2018.228&partnerID=40&md5=3a041fda06dd3dc6d0749c0118eee9dd
dc.sourceComputing in Cardiology
dc.subjectCardiology
dc.subjectCell culture
dc.subjectDiffusion
dc.subjectDispersion (waves)
dc.subjectElectrophysiology
dc.subjectAction potential durations
dc.subjectElectrical components
dc.subjectFibroblast proliferation
dc.subjectFractional derivatives
dc.subjectFractional diffusion
dc.subjectSpatial characteristics
dc.subjectStructural component
dc.subjectStructural remodeling
dc.subjectFibroblasts
dc.titleFractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.22489/CinC.2018.228
dc.relation.citationvolume2018-September
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Cra. 56 C #51-110, Medel?in, Colombia; Tobon, C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Palacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Andrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia; Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain
dc.relation.referencesKirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Van Putte, B., Vardas: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678
dc.relation.referencesCsepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends in Cardiovascular Medicine, 27 (1), pp. 1-11
dc.relation.referencesAn?e, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Ector, H., Heidbüchel, H., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) Journal of Molecular and Cellular Cardiology, 43 (2), pp. 148-158
dc.relation.referencesTrayanova, Na., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Frontiers in Physiology, 5, pp. 1-12. , November
dc.relation.referencesRoney, C.H., Bayer, J.D., Zahid, S., Meo, M., Boyle, P.M.J., Trayanova, N.A., Ha, M., Vigmond, E.J., Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms (2016) Europace, 18, pp. 146-155. , April
dc.relation.referencesOldham, K., Spanier, J., The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (2006) Dover Books on Mathematics, , Dover Publications
dc.relation.referencesBueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization (2014) Journal of the Royal Society Interface, 11. , August
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Tenreiro, M.J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Frontiers in Physiology, 9, pp. 1-14. , JUL
dc.relation.referencesWilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Frontiers in Physiology, 3, pp. 1-16. , JAN(January)
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cellswith realistic ionic properties (2002) Circulation Research, 90 (9), pp. 73e-87
dc.relation.referencesMaleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophysical Journal October, 97 (8), pp. 2179-2190
dc.relation.referencesBueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numerical Mathematics, 54 (4), pp. 937-954
dc.relation.referencesRohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias (2009) Heart Rhythm, 6 (6), pp. 848-856
dc.relation.referencesRohr, S., Arrhythmogenic implications of fibroblastmyocyte interactions (2012) Circulation Arrhythmia and Electrophysiology, 5 (2), pp. 442-452
dc.relation.referencesAshihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circulation Research January, 110 (2), pp. 275-284
dc.relation.referencesBurstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) Journal of the American College of Cardiology February, 51 (8), pp. 802-809
dc.relation.referencesRidler, M.E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Canadian Journal of Cardiology, 27 (1), pp. 112-119
dc.relation.referencesAswath Kumar, A.K., Drahi, A., Jacquemet, V., Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling (2017) Computers in Biology and Medicine, 81, pp. 55-63. , December 2016
dc.relation.referencesMiragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circulation Research, 98 (6), pp. 801-810
dc.relation.referencesNguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils (2014) Journal of Molecular and Cellular Cardiology, 70, pp. 83-91
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem