Mostrar el registro sencillo del ítem

dc.creatorToro L.
dc.creatorZuleta A.A.
dc.creatorCorrea E.
dc.creatorCalderón D.
dc.creatorGalindez Y.
dc.creatorCalderón J.
dc.creatorChacón P.
dc.creatorValencia-Escobar A.
dc.creatorEcheverría E F.
dc.date2020
dc.date.accessioned2020-04-29T14:53:49Z
dc.date.available2020-04-29T14:53:49Z
dc.identifier.issn20531591
dc.identifier.urihttp://hdl.handle.net/11407/5737
dc.descriptionIn this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical composition of formed coatings were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, salt spray test, hydrogen evolution and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were conducted in order to study the corrosion behavior of the coated samples. It was found that the use of low frequency pulsed current for the PEO process reduces the film porosity and increases its thickness, compared with PEO films obtained by continuous anodization. The effect of the pulsed current signal was also analyzed for a two steps PEO process, observing changes in the morphological characteristics of the coatings which allow a better corrosion according electrochemical tests (short term corrosion measurements). However, long term tests results as hydrogen evolution and salt spray tests, indicated the opposite. Both the film porosity and thickness were affected by either the pulsing of the current or the use of a two-step process. © 2020 The Author(s). Published by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe97774
dc.sourceMaterials Research Express
dc.subjectanodizing
dc.subjectcorrosion
dc.subjectMg-Al-Zn alloys
dc.subjectplasma electrolytic oxidation
dc.subjectsalt fog test
dc.subjectAluminum alloys
dc.subjectAluminum corrosion
dc.subjectAnodic oxidation
dc.subjectAtmospheric corrosion
dc.subjectCoatings
dc.subjectCorrosion
dc.subjectCorrosive effects
dc.subjectElectrochemical impedance spectroscopy
dc.subjectElectrolysis
dc.subjectEnergy dispersive spectroscopy
dc.subjectFourier transform infrared spectroscopy
dc.subjectHydrogen
dc.subjectMagnesium alloys
dc.subjectMorphology
dc.subjectPorosity
dc.subjectScanning electron microscopy
dc.subjectSeawater corrosion
dc.subjectSodium Fluoride
dc.subjectTernary alloys
dc.subjectTesting
dc.subjectZinc alloys
dc.subjectChemical compositions
dc.subjectCorrosion measurements
dc.subjectElectrochemical test
dc.subjectEnergy dispersive spectroscopies (EDS)
dc.subjectMg-Al -Zn alloys
dc.subjectMorphological characteristic
dc.subjectPlasma electrolytic oxidation
dc.subjectSalt fog test
dc.subjectElectrochemical corrosion
dc.titleNew insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materiales
dc.identifier.doi10.1088/2053-1591/ab61ac
dc.relation.citationvolume7
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationToro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Zuleta, A.A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Correa, E., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 65, Medellín, Colombia; Calderón, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Galindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Calderón, J., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Chacón, P., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Valencia-Escobar, A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Echeverría E, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesAlam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558
dc.relation.referencesCho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf.
dc.relation.referencesEsmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193
dc.relation.referencesCalderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178
dc.relation.referencesResearch, E., Tech Brief, D., (2009), pp. 75-77
dc.relation.referencesCao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845
dc.relation.referencesLi, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301
dc.relation.referencesGray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113
dc.relation.referencesSegarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050
dc.relation.referencesSreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615
dc.relation.referencesRamalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24
dc.relation.referencesAshassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308
dc.relation.referencesHsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432
dc.relation.referencesWang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284
dc.relation.referencesNazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498
dc.relation.referencesDehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107
dc.relation.referencesZhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290
dc.relation.referencesArrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220
dc.relation.referencesBarati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132
dc.relation.referencesXin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397
dc.relation.referencesUr Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124
dc.relation.referencesBai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963
dc.relation.referencesLin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417
dc.relation.referencesChen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35
dc.relation.referencesEcheverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740
dc.relation.referencesEinkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79
dc.relation.referencesLee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422
dc.relation.referencesTsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740
dc.relation.referencesRaj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121
dc.relation.referencesJuhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27
dc.relation.referencesSong, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322
dc.relation.referencesHwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365
dc.relation.referencesBala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935
dc.relation.referencesAlabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21
dc.relation.referencesBononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870
dc.relation.referencesChen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335
dc.relation.referencesYu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278
dc.relation.referencesNarayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier)
dc.relation.referencesSong, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458
dc.relation.referencesHairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404
dc.relation.referencesQian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23
dc.relation.referencesChoi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368
dc.relation.referencesRasband, W.S., (2018) ImageJ
dc.relation.referencesMingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667
dc.relation.referencesAtrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200
dc.relation.referencesSong, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572
dc.relation.referencesMingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032
dc.relation.referencesB117-18, A., (2018), pp. 1-15
dc.relation.referencesASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steel
dc.relation.referencesHussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10)
dc.relation.referencesLiu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460
dc.relation.referencesHwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678
dc.relation.referencesPezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13
dc.relation.referencesGabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542
dc.relation.referencesArrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101
dc.relation.referencesBonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4
dc.relation.referencesCui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237
dc.relation.referencesSalman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231
dc.relation.referencesBetancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles.
dc.relation.referencesDuan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009
dc.relation.referencesSabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244
dc.relation.referencesLi, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167
dc.relation.referencesDelgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium Alloys
dc.relation.referencesYun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250
dc.relation.referencesFeliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746
dc.relation.referencesLee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391
dc.relation.referencesSamaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión.
dc.relation.referencesLi, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455
dc.relation.referencesMori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem