Mostrar el registro sencillo del ítem

dc.creatorSamia A.
dc.creatorFeddi E.
dc.creatorDuque C.A.
dc.creatorMora-Ramos M.E.
dc.creatorAkimov V.
dc.creatorCorrea J.D.
dc.date2020
dc.date.accessioned2020-04-29T14:53:50Z
dc.date.available2020-04-29T14:53:50Z
dc.identifier.issn9270256
dc.identifier.urihttp://hdl.handle.net/11407/5741
dc.descriptionElectronic and optical properties of phosphorene quantum dots functionalized with an organic molecule, porphyrin, are investigated using density functional theory with two different van der Waals functionals. The electronic structure of this complex is obtained and with this information, the real and imaginary parts of the dielectric function are calculated, from which, the interband optical response can be determined. Depending on the size of the quantum dot and the relative orientation between the dot and the organic molecule, it is found that the porphyrin physisorption leads to important modifications of the energy spectrum of the functionalized blue phosphorene quantum dots. These changes reflect in the optical response of the complex which shows features that come from both the blue phosphorene structure and the organic molecule. It is also found that the rotations of the molecule with respect to the phosphorene quantum dot do not practically alter the value of the binding energy. © 2019 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85072517436&doi=10.1016%2fj.commatsci.2019.109278&partnerID=40&md5=561d3c05a7b72502274e99fc86ba1484
dc.sourceComputational Materials Science
dc.subjectDFT
dc.subjectOptical
dc.subjectPhosphorene
dc.subjectQuantum-dots
dc.subjectBinding energy
dc.subjectDensity functional theory
dc.subjectElectronic structure
dc.subjectMolecules
dc.subjectNanocrystals
dc.subjectOptical properties
dc.subjectPorphyrins
dc.subjectVan der Waals forces
dc.subjectDielectric functions
dc.subjectElectronic and optical properties
dc.subjectFree base porphyrins
dc.subjectOptical
dc.subjectOptoelectronic properties
dc.subjectPhosphorene
dc.subjectReal and imaginary
dc.subjectRelative orientation
dc.subjectSemiconductor quantum dots
dc.titleOptoelectronic properties of phosphorene quantum dots functionalized with free base porphyrins
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.commatsci.2019.109278
dc.relation.citationvolume171
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationSamia, A., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Feddi, E., Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Rabat, Morocco; Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico; Akimov, V., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesGeim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499 (7459), pp. 419-425. , http://www.nature.com/doifinder/10.1038/nature12385, URL:
dc.relation.referencesXu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798. , http://pubs.acs.org/doi/abs/10.1021/cr300263a, URL:
dc.relation.referencesGupta, A., Sakthivel, T., Seal, S., Recent development in 2D materials beyond graphene (2015) Prog. Mater Sci., 73, pp. 44-126
dc.relation.referencesButler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene (2013) ACS Nano, 7 (4), pp. 2898-2926. , http://pubs.acs.org/doi/abs/10.1021/nn400280c, URL:
dc.relation.referencesLiu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility (2014) ACS Nano, 8 (4), pp. 4033-4041. , http://pubs.acs.org/doi/abs/10.1021/nn501226z, URL:
dc.relation.referencesBoehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U., Dünnste kohlenstoff-folien (thin carbon leaves) (1961) Zeitschrift für Naturforschung B, 17, pp. 150-152
dc.relation.referencesNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669
dc.relation.referencesKou, L., Chen, C., Smith, S.C., Phosphorene: fabrication, properties, and applications (2015) J. Phys. Chem. Lett., 6 (14), pp. 2794-2805. , http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01094, URL:
dc.relation.referencesCarvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H., Phosphorene: from theory to applications (2016) Nat. Rev. Mater., 1, p. 16061. , review Article
dc.relation.referencesZhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K.D., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus (2016) Nano Lett., 16 (8), pp. 4903-4908
dc.relation.referencesXu, Y., Wang, X., Zhang, W.L., Lv, F., Guo, S., Recent progress in two-dimensional inorganic quantum dots (2018) Chem. Soc. Rev., 47 (2), pp. 586-625
dc.relation.referencesVishnoi, P., Mazumder, M., Barua, M., Pati, S.K., Rao, C.N., Phosphorene quantum dots (2018) Chem. Phys. Lett., 699, pp. 223-228
dc.relation.referencesAbdelsalam, H., Saroka, V.A., Lukyanchuk, I., Portnoi, M.E., Multilayer phosphorene quantum dots in an electric field: energy levels and optical absorption (2018) J. Appl. Phys., 124 (12)
dc.relation.referencesAbdelsalam, H., Saroka, V.A., Younis, W.O., Phosphorene quantum dot electronic properties and gas sensing (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 105-109
dc.relation.referencesTian, X., Duan, J., Wei, J., Feng, N., Wang, X., Gong, Z., Du, Y., Yakobson, B.I., Modulating blue phosphorene by synergetic codoping: indirect to direct gap transition and strong bandgap bowing (2019) Adv. Funct. Mater., 89 (3), p. 1808721
dc.relation.referencesJiang, Z.T., Liang, F.X., Lv, Z.T., Ren, Y.H., Han, Q.Z., Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots (2019) Phys. E: Low-Dimension. Syst. Nanostruct., 107 (November 2018), pp. 137-141
dc.relation.referencesZhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Comput. Mater. Sci., 130, pp. 56-63
dc.relation.referencesSafari, F., Moradinasab, M., Fathipour, M., Kosina, H., Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study (2019) Appl. Surf. Sci., 464 (September 2018), pp. 153-161
dc.relation.referencesCheccoli, P., Conte, G., Salvatori, S., Paolesse, R., Bolognesi, A., Berliocchi, M., Brunetti, F., Lugli, P., Tetra-phenyl porphyrin based thin film transistors (2003) Synth. Met., 138 (1-2), pp. 261-266
dc.relation.referencesBabonas, G., Snitka, V., Rodait?, R., imkien?, I., R?za, A., Treideris, M., Spectroscopic ellipsometry of porphyrin adsorbed in porous silicon (2005) Acta Phys. Polonica A, 107, pp. 319-323
dc.relation.referencesJarvis, S.P., Taylor, S., Baran, J.D., Thompson, D., Saywell, A., Mangham, B., Champness, N.R., Moriarty, P., Physisorption controls the conformation and density of states of an adsorbed porphyrin (2015) J. Phys. Chem. C, 119 (50), pp. 27982-27994
dc.relation.referencesNiskanen, M., Kuisma, M., Cramariuc, O., Golovanov, V., Hukka, T.I., Tkachenko, N., Rantala, T.P., Porphyrin adsorbed on the (101¯0) surface of the wurtzite structure of ZNO conformation induced effects on the electron transfer characteristics (2013) PCCP, 15, pp. 17408-17418
dc.relation.referencesParedes-Gil, K., Mendizabal, F., Páez-Hernández, D., Arratia-Pérez, R., Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: a DFT/TD-DFT study (2017) Comput. Mater. Sci., 126, pp. 514-527
dc.relation.referencesSchneider, J., Berger, T., Diwald, O., Reactive porphyrin adsorption on TiO2 anatase particles: Solvent assistance and the effect of water addition (2018) ACS Appl. Mater. Interfaces, 10 (19), pp. 16836-16842
dc.relation.referencesMandal, B., Sarkar, S., Sarkar, P., Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell (2015) J. Phys. Chem. C, 119 (6), pp. 3400-3407
dc.relation.referencesRajbanshi, B., Sarkar, P., Optimizing the photovoltaic properties of CdTe quantum dot-porphyrin nanocomposites: a theoretical study (2016) J. Phys. Chem. C, 120 (32), pp. 17878-17886
dc.relation.referencesKar, M., Sarkar, R., Pal, S., Sarkar, P., Pathways for improving the photovoltaic efficiency of porphyrin and phosphorene antidot lattice nanocomposites: an insight from a theoretical study (2019) J. Phys. Chem. C, 123 (9), pp. 5303-5311
dc.relation.referencesGao, F., Yang, C.L., Wang, M.S., Ma, X.G., Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell (2018) J. Mater. Sci., 53 (7), pp. 5140-5150
dc.relation.referencesRajbanshi, B., Kar, M., Sarkar, P., Sarkar, P., Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: an unexplored inorganic-organic nanohybrid with novel photovoltaic properties (2017) Chem. Phys. Lett., 685, pp. 16-22
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745
dc.relation.referencesKlime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional (2009) J. Phys.: Condens. Matter, 22 (2)
dc.relation.referencesBerland, K., Hyldgaard, P., Exchange functional that tests the robustness of the plasmon description of the van der waals density functional (2014) Phys. Rev. B, 89 (3)
dc.relation.referencesHoat, D., Silva, J., Blas, A., Rámirez, J., Effect of pressure on structural, electronic and optical properties of SrF2: a first principles study (2018) Rev. Mex. Fis., 64 (1), pp. 94-100
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem