Mostrar el registro sencillo del ítem

dc.creatorJames S.C.
dc.creatorJohnson E.L.
dc.creatorBarco J.
dc.creatorRoberts J.D.
dc.date2020
dc.date.accessioned2020-04-29T14:53:51Z
dc.date.available2020-04-29T14:53:51Z
dc.identifier.issn9601481
dc.identifier.urihttp://hdl.handle.net/11407/5744
dc.descriptionIncreasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. Turbine-based, current-energy-converter (CEC) technologies remove energy from current-driven systems and in the process generate distinct wakes, which can interact with other CEC devices and can alter flow regimes, sediment dynamics, and water quality. This work introduces Sandia National Laboratories-Environmental Fluid Dynamics Code CEC module and verifies it against a two-dimensional analytical solution for power generation and hydrodynamic response of flow through a CEC tidal fence. With a two-dimensional model that accurately reflects an analytical solution, the effort was extended to three-dimensional models of three different laboratory-flume experiments that measured the impacts of CEC devices on flow. Both flow and turbulence model parameters were then calibrated against wake characteristics and turbulence measurements. This is the first time that turbulence parameter values have been specified for CEC devices. Measurements and simulations compare favorably and demonstrate the utility and accuracy of this numerical approach for simulating the impacts of CEC devices on the flow field. The model can be extended to future siting and analyses of CEC arrays in complex domains. © 2017 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85024840209&doi=10.1016%2fj.renene.2017.07.020&partnerID=40&md5=76e6cb049b817e41eff80a2064fc21a2
dc.sourceRenewable Energy
dc.subjectCurrent-energy conversion
dc.subjectMarine renewable energy
dc.subjectNumerical modeling
dc.subjectSNL-EFDC
dc.subjectEnergy conversion
dc.subjectNumerical models
dc.subjectOcean currents
dc.subjectTidal power
dc.subjectTurbulence models
dc.subjectWakes
dc.subjectWater quality
dc.subjectCurrent energy
dc.subjectEnvironmental fluid dynamics code
dc.subjectMarine renewable energy
dc.subjectSandia National Laboratories
dc.subjectSNL-EFDC
dc.subjectThree-dimensional model
dc.subjectTurbulence measurements
dc.subjectTurbulence parameters
dc.subjectParameter estimation
dc.titleSimulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.1016/j.renene.2017.07.020
dc.relation.citationvolume147
dc.relation.citationstartpage2531
dc.relation.citationendpage2541
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationJames, S.C., Baylor University, Departments of Geosciences & Mechanical Engineering, One Bear Place #97354, Waco, TX, United States; Johnson, E.L., Montana State University, Department of Mechanical & Industrial Engineering, 220 Roberts Hall, PO Box 173800, Bozeman, MT, United States; Barco, J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, Colombia; Roberts, J.D., Sandia National Laboratories, Water Power Technologies Department, 1515 Eubank SE, Albuquerque, NM MS 1124, United States
dc.relation.referencesBryden, I.G., Couch, S.J., Owen, A., Melville, G., Tidal current resource assessment (2007) J. Power Energy, 221, pp. 125-135
dc.relation.referencesInger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., Grecian, W.J., Hodgson, D.J., Mills, C., Godley, B.J., Marine renewable energy: Potential benefits to biodiversity? An urgent call for research (2009) J. Appl. Ecol., 46, pp. 1145-1153
dc.relation.referencesPolagye, B., Kawase, M., Malte, P., In-stream tidal energy potential of Puget Sound, Washington (2009) Proc. Inst. Mech. Eng. Part A J. Power Energy, 223, pp. 571-587
dc.relation.referencesGarrett, C., Cummins, P., The power potential of tidal currents in channels (2005) Proc. R. Soc. A Math. Phys. Eng. Sci., 461, pp. 2563-2572
dc.relation.referencesHasegawa, D., Sheng, J., Greenberg, D.A., Thompson, K.R., Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model (2011) Ocean Dyn., 61, pp. 1845-1868
dc.relation.referencesPolagye, B., Malte, P., Kawase, M., Durran, D., Effect of large-scale kinetic power extraction on time-dependent estuaries (2008) Proc. Inst. Mech. Eng. Part A J. Power Energy, 222, pp. 471-484
dc.relation.referencesDeltares, Delft3D: Hydro-morphodynamics (2014), Delft3D Delft, The Netherlands 712 pp
dc.relation.referencesBaston, S., Waldman, S., Side, J., Modelling Energy Extraction in Tidal Flows, Revision 3.1 (2014), Edinburgh, UK 39 pp
dc.relation.referencesMungar, S., Hydrodynamics of Horizontal-axis Tidal Current Turbines (2014), Technical University of Delft Delft, The Netherlands 157 pp
dc.relation.referencesChen, Y., Lin, B., Lin, J., Modelling tidal current energy extraction in large area using a three-dimensional estuary model (2014) Comput. Geosci., 72, pp. 76-83
dc.relation.referencesNeill, S.P., Litt, E.J., Couch, S.J., Davies, A.G., The impact of tidal stream turbines on large-scale sediment dynamics (2009) Renew. Energy, 34, pp. 2803-2812
dc.relation.referencesAmoudry, L., Bell, P.S., Black, K.S., Gatliff, R.W., Helsby, R., Souza, A.J., Thorne, P.D., Wolf, J., A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations (2009), Edinburgh, UK 101 pp
dc.relation.referencesNeill, S.P., Jordan, J.R., Couch, S.J., Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks (2012) Renew. Energy, 37, pp. 387-397
dc.relation.referencesRobins, P.E., Influence of tidal energy extraction on fine sediment dynamics (2013) 2nd Oxford Tidal Energy Workshop, Oxford, UK, pp. 27-28. , Oxford, UK R.H.J. Willden T. Nishino
dc.relation.referencesAhmadian, R., Falconer, R., Bockelmann-Evans, B., Far-field modelling of the hydro-environmental impact of tidal stream turbines (2012) Renew. Energy, 38, pp. 107-116
dc.relation.referencesDOE, Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies (2009), GO-102009-2955, Washington, DC 143 pp
dc.relation.referencesBailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., Thompson, P.M., Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals (2010) Mar. Pollut. Bull., 60, pp. 888-897
dc.relation.referencesCMACS, A Baseline Assessment of Electromagnetic Field Generated by Offshore Windfarm Cables (2003), COWRIE Report EMF - 01-2002 66, Liverpool, UK 71 pp
dc.relation.referencesTricas, T., Gill, A., Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species (2011), BOEMRE 2011-09, Camarillo, CA 426 pp
dc.relation.referencesPolagye, B., Joslin, J., Stewart, A., Copping, A., Integrated instrumentation for marine energy monitoring (2014) 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies, EIMR, Stornoway, Scotland, pp. 1-3
dc.relation.referencesHamrick, J.M., The Environmental Fluid Dynamics Code: User Manual, EFDC User Manual: Version 1.01 (2007), Fairfax, VA 231 pp
dc.relation.referencesHamrick, J.M., The Environmental Fluid Dynamics Code: Theory and Computation, EFDC Theory and Computation: Version 1.01 (2007), Fairfax, VA 60 pp
dc.relation.referencesJames, S.C., Sandia National Laboratories Environmental Fluid Dynamics Code: Marine Hydrokinetic Module User's Manual (2014), SAND2014-1804, Albuquerque, NM 33 pp
dc.relation.referencesKatul, G.G., Mahrt, L., Poggi, D., Sanz, C., One- and two-equation models for canopy turbulence (2004) Bound. Layer Meteorol., 113, pp. 81-109
dc.relation.referencesRéthoré, P.-E., Sørensen, N.N., Zahle, F., Study of the atmospheric wake turbulence of a CFD actuator disc model (2009) European Wind Energy Convention, pp. 1-9. , Marseille, France
dc.relation.referencesCerco, C.F., Cole, T., User's Guide to the CE-qual-icm Three-dimensional Eutrophication Model (1995), Release Version 1.0, Technical Report EL-95-15 316 pp
dc.relation.referencesPark, K., Kuo, A.Y., Shen, J., Hamrick, J.M., A Three-dimensional Hydrodynamic-eutrophication Model (HEM-3D): Description of Water Quality and Sediment Process Submodels, Special Report in Applied Marine Science and Ocean Engineering No. 327 (1995), Gloucester Point, VA 204 pp
dc.relation.referencesJames, S.C., Jones, C.A., Grace, M.D., Roberts, J.D., Advances in sediment transport modelling (2010) J. Hydraul. Res., 48, pp. 754-763
dc.relation.referencesJones, C.A., A Sediment Transport Model (2001), University of California Santa Barbara Santa Barbara, CA 119 pp
dc.relation.referencesO'Donncha, F., James, S.C., O'Brien, N., Ragnoli, E., Parallelisation of a hydro-environmental model for simulating marine current devices (2015) MTS/IEEE OCEANS 15 Conference, Washington, DC, pp. 1-7
dc.relation.referencesO'Donncha, F., Ragnoli, E., Suits, F., Parallelisation study of a three-dimensional environmental flow model (2014) Comput. Geosci., 64, pp. 96-103
dc.relation.referencesMellor, G.L., Yamada, T., Development of a turbulence closure model for geophysical fluid problems (1982) Rev. Geophys., 20, pp. 851-875
dc.relation.referencesGalperin, B., Kantha, L.H., Hassid, S., Rosati, A., A quasi-equilibrium turbulent energy model for geophysical flows (1988) J. Atmos. Sci., 45, pp. 55-62
dc.relation.referencesBlumberg, A.F., Mellor, G.L., A description of a three-dimensional coastal ocean circulation model (1987) Three Dimensional Coastal Ocean Models Conference, pp. 1-16. , N.S. Heaps American Geophysical Union Washington, DC
dc.relation.referencesPeng, S., Fu, G.Y.Z., Zhao, X.H., Moore, B.C., Integration of environmental fluid dynamics code (EFDC) model with Geographical Information System (GIS) platform and its applications (2011) J. Environ. Inf., 17, pp. 75-82
dc.relation.referencesTuckey, B.J., Gibbs, M.T., Knight, B.R., Gillespie, P.A., Tidal circulation in Tasman and Golden Bays: Implications for river plume behaviour (2006) New Zeal. J. Mar. Freshwat. Res., 40, pp. 305-324
dc.relation.referencesJi, Z.-G., Hydrodynamics, Quality, W., Modeling Rivers, Lakes, and Estuaries (2008), John Wiley and Sons Hoboken, NJ
dc.relation.referencesJi, Z.G., Morton, M.R., Hamrick, J.M., Wetting and drying simulation of estuarine processes (2001) Estuar. Coast. Shelf Sci., 53, pp. 683-700
dc.relation.referencesJames, S.C., Shrestha, P.L., Roberts, J.D., Modeling noncohesive sediment transport using multiple sediment size classes (2006) J. Coast. Res., 22, pp. 1125-1132
dc.relation.referencesJames, S.C., Janardhanam, V., Hanson, D.T., Simulating pH effects in an algal-growth hydrodynamics model (2013) J. Phycol., 49, pp. 608-615
dc.relation.referencesJames, S.C., Barco, J., Johnson, E., Roberts, J.D., Lefantzi, S., Verifying marine-hydro-kinetic energy generation simulations using SNL-EFDC (2011) MTS/IEEE OCEANS 11 Conference, Kona, HI, pp. 1-9
dc.relation.referencesJames, S.C., Seetho, E., Jones, C., Roberts, J., Simulating environmental changes due to marine hydrokinetic energy installations (2010) MTS/IEEE OCEANS 10 Conference, Seattle, WA, pp. 1-10
dc.relation.referencesYang, X., Khosronejad, A., Chawdhary, S., Calderer, A., Angelidis, D., Shen, L., Sotiropoulos, F., Simulation-based approach for site-specific optimization of marine and hydrokinetic energy conversion systems (2015) 36th IAHR World Congress, Spain Water and IWHR, The Hague, The Netherlands, pp. 1-4
dc.relation.referencesKang, S., Borazjani, I., Colby, J.A., Sotiropoulos, F., Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine (2012) Adv. Water Resour., 39, pp. 33-43
dc.relation.referencesSotiropoulos, F., Kang, S., Yang, X., Large-eddy simulation of turbulent flow past hydrokinetic turbine arrays in natural waterways (2012) American Geophysical Union Fall Meeting, San Francisco, CA
dc.relation.referencesBarltrop, N., Varyani, K.S., Grant, A., Clelland, D., Pham, X.P., INvestigation into wave current interactions in marine current turbines (2007) Proc. Inst. Mech. Eng. Part A J. Power Energy, 221, pp. 233-242
dc.relation.referencesGalloway, P., Myers, L., Bahaj, A., Studies of a scale tidal turbine in close proximity to waves (2010) 3rd International Conference on Ocean Energy, Bilbao, Spain, pp. 1-6
dc.relation.referencesPoggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., Katul, G.G., The effect of vegetation density on canopy sublayer turbulence (2004) Bound. Layer Meteorol., 111, pp. 565-587
dc.relation.referencesRéthoré, P.-E., Wind Turbine Wake in Atmospheric Turbulence (2009), Aalborg University Aalbork, Denmark 187 pp
dc.relation.referencesBatten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 371, pp. 1-14
dc.relation.referencesWarner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P., Performance of four turbulence closure models implemented using a generic length scale method (2005) Ocean Model., 8, pp. 81-113
dc.relation.referencesSmagorinsky, J., General circulation experiments with primitive equations 1: The basic experiment (1963) Mon. Weather Rev., 91, pp. 99-164
dc.relation.referencesRoc, T., Conley, D.C., Greaves, D., Methodology for tidal turbine representation in ocean circulation model (2013) Renew. Energy, 51, pp. 448-464
dc.relation.referencesYang, Z., Wang, T., Copping, A.E., Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model (2013) Renew. Energy, 50, pp. 605-613
dc.relation.referencesChen, C., Cowles, G., Beardsley, R.C., An Unstructured Grid, Finite-volume Coastal Ocean Model: FVCOM User Manual (2004), Technical Report-04-0601 183 pp
dc.relation.referencesMyers, L.E., Bahaj, A.S., Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators (2010) Ocean Eng., 37, pp. 218-227
dc.relation.referencesWhelan, J.I., Graham, J.M.R., Peiró, J., A free-surface and blockage correction for tidal turbines (2009) J. Fluid Mech., 624, pp. 281-291
dc.relation.referencesMyers, L.E., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565
dc.relation.referencesNeary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Wake Flow Recovery Downstream of a 1:10 Scale Axial Flow Hydrokinetic Turbine Measured with Pulse-coherent Acoustic Doppler Profiler (PC-ADP) (2012), ORNL/TML-2012 12 pp
dc.relation.referencesRoache, P.J., Perspective: a method for uniform reporting of grid refinement studies (1994) J. Fluids Eng., 116, pp. 405-413
dc.relation.referencesMyers, L.E., Bahaj, A.S., Rawlinson-Smith, R.I., Thomson, M., The effect of boundary proximity upon the wake structures of horizontal axis marine current turbines (2008) 27th International Conference on Offshore Mechanics and Artic Engineering, ASME, Estoril, Portugal, pp. 709-719
dc.relation.referencesHarrison, M.E., Batten, W.M.J., Myers, L.E., Bahaj, A.S., A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 566-575
dc.relation.referencesMyers, L., Bahaj, A.S., Near wake properties of horizontal axis marine current turbines (2009) 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 558-565
dc.relation.referencesBatten, W.M.J., Harrison, M.E., Bahaj, A.S., Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines (2013) Phil. Trans. R. Soc. A, 371, p. 20120293
dc.relation.referencesNeary, V.S., Gunawan, B., Hill, C., Chamorro, L.P., Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison (2013) Renew. Energy, 60, pp. 1-6
dc.relation.referencesBahaj, A.-B.S., Myers, L.E., Thomson, M.D., Jorge, N., Characterising the wake of a horizontal axis marine turbine (2007) 7th European Wave and Tidal Energy Conference, Porto, Portugal, pp. 1-9
dc.relation.referencesDoherty, J.E., Model-independent Parameter Estimation User Manual Part II: PEST Utility Support Software (2016), PEST Addendum, Brisbane, Australia 226, pp
dc.relation.referencesDoherty, J.E., Model-independent Parameter Estimation User Manual Part I: PEST, SENSAN and Global Optimisers (2016), PEST Manual, Brisbane, Australia 390, pp
dc.relation.referencesJames, S.C., Doherty, J.E., Eddebbarh, A.-A., Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada (2009) Ground Water, 47, pp. 851-869
dc.relation.referencesStallard, T., Collings, R., Feng, T., Whelan, J., Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors (2013) Phil. Trans. R. Soc. A, 371, p. 20120159
dc.relation.referencesNelson, K., James, S.C., Roberts, J.D., Jones, C.A., A framework for determining improved placement of current energy converters subject to environmental constraints (2017) Int. J. Sustain. Energy, pp. 1-15. , http://www.tandfonline.com/doi/abs/10.1080/14786451.2017.1334654?journalCode=gsol20
dc.relation.referencesO'Donncha, F., Ragnoli, E., Venugopal, S., James, S.C., Katrinis, K., On the efficiency of executing hydro-environmental models on Cloud (2016) Procedia Eng., 154, pp. 199-206
dc.relation.referencesGunawan, B., Neary, V.S., Grovue, S., Mortensen, J., Heiner, B., Field measurement test plan to determine effects of hydrokinetic turbine deployment on canal test site in Yakima, WA, USA (2014) 2nd Marine Energy Technology Symposium, METS2014, Seattle, WA, pp. 1-8
dc.relation.referencesGunawan, B., Roberts, J., Neary, V.S., Hydrodynamic effects of hydrokinetic turbine deployment in an irrigation canal (2015) 3rd Marine Energy Technology Symposium, METS2015, Washington, DC
dc.relation.referencesDoherty, J.E., Welter, D.E., A short exploration of structural noise (2010) Water Resour. Res., 46. , W05525
dc.relation.referencesBlackmore, T., Batten, W.M.J., Bahaj, A.S., Influence of turbulence on the wake of a marine current turbine simulator (2014) Proc. R. Soc. A Math. Phys. Eng. Sci., 470. , 20140331
dc.relation.referencesCraig, P.M., User's Manual for EFDC_Explorer: A Pre/Post Processor for the Environmental Fluid Dynamics Code (2016), EFDC_Explorer 2016 391 pp
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem