Show simple item record

dc.creatorGómez-Urrea H.A.
dc.creatorOspina-Medina M.C.
dc.creatorCorrea-Abad J.D.
dc.creatorMora-Ramos M.E.
dc.creatorCaro-Lopera F.J.
dc.descriptionThis work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding band gaps are wider than those usually reported in literature for square lattice dielectric structures, and a practical comparison is carried out in the calculation in order to verify such assert. These photonic gaps can be adjusted by changing different lattice parameters, such as the commensurable angle, and the permittivities involved. © 2019 Elsevier B.V.
dc.publisherElsevier B.V.
dc.sourceOptics Communications
dc.subject2D photonic crystals
dc.subjectBravais Moiré lattice
dc.subjectTunable band gap
dc.subjectCrystal lattices
dc.subjectEnergy gap
dc.subject2-D photonic crystals
dc.subjectDielectric structure
dc.subjectPermittivity constant
dc.subjectSquare lattices
dc.subjectTunable band structures
dc.subjectTunable Band-gap
dc.subjectTwo-dimensional photonic crystals
dc.subjectPhotonic band gap
dc.titleTunable band structure in 2D Bravais–Moiré photonic crystal lattices
dc.publisher.programFacultad de Ciencias Básicas
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationGómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Ospina-Medina, M.C., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa-Abad, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca CP 62209, Mexico; Caro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesJoannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University Press
dc.relation.referencesAnderson, C.M., Giapis, K.P., Larger two-dimensional photonic band gaps (1996) Phys. Rev. Lett., 77, pp. 2949-2952
dc.relation.referencesKushwaha, M.S., Djafari-Rouhani, B., Band-gap engineering in two-dimensional periodic photonic crystals (2000) J. Appl. Phys., 88, pp. 2877-2884
dc.relation.referencesQiu, M., He, S., Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap (2000) J. Opt. Soc. Amer. B, 17, pp. 1027-1030
dc.relation.referencesDavid, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from the two-dimensional photonic crystals with archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003
dc.relation.referencesDavid, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings an quasi-crystals (2001) Opt. Quantum. Electron., 37, pp. 1427-1434
dc.relation.referencesYe, Z., Shen, L., He, S., Design for 2D anisotropic photonic crystal with large absolute band gaps by using a genetic algorithm (2004) Eur. Phys. J. B, 37, pp. 417-419
dc.relation.referencesPreble, S., Lipson, M., Lipson, H., Two-dimensional photonic crystals designed by evolutionary algorithms (2005) Appl. Phys. Lett., 86
dc.relation.referencesZarei, S., Shahabadi, M., Mohajerzadeh, S., Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals (2008) J. Modern Opt., 55, pp. 2971-2980
dc.relation.referencesSigmund, O., Hougaard, K., Geometric properties of optimal photonic crystals (2008) Phys. Rev. Lett., 100
dc.relation.referencesDyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures (2010) J. Appl. Phys., 107
dc.relation.referencesMen, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., Design of photonic crystals with multiple and combined band gaps (2011) Phys. Rev. E, 83
dc.relation.referencesMen, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., (2012) Phys. Rev. E, 85, p. 049909. , (erratum)
dc.relation.referencesShi, P., Huang, K., Li, Y.-P., Photonic crystal with complex unit cell for large complete band gap (2012) Opt. Commun., 285, pp. 3128-3132
dc.relation.referencesCheng, X.-L., Yang, J., Maximizing band gaps in two-dimensional photonic crystals in square lattices (2013) J. Opt. Soc. Amer. A, 30, pp. 2314-2319
dc.relation.referencesMeng, F., Li, Y., Li, S., Lin, H., Jia, B., Huang, X., Achieving large band gaps in 2D symmetric and asymmetric photonic crystals (2017) J. Lightwave Technol., 35, p. 1670
dc.relation.referencesCerjan, A., Fan, S., Complete photonic band gaps in supercell photonic crystals (2017) Phys. Rev. A, 96
dc.relation.referencesLi, S., Lin, H., Meng, F., Moss, D., Huang, X., Jia, B., On-demand design of tunable complete photonic band gaps based on bloch mode analysis (2018) Sci. Rep., 8, p. 14283
dc.relation.referencesLi, W., Meng, F., Chen, Y., Li, Y., Huang, X., Topology optimization of photonic and phononic crystals and metamaterials: A review (2019) Adv. Theory Simul., 2, p. 1900017
dc.relation.referencesBravais, A., Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l'espace (1850) J. Ecole Polytech., 33 (19), pp. 1-128
dc.relation.referencesBalci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429
dc.relation.referencesBalci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98
dc.relation.referencesLubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98
dc.relation.referencesCao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50
dc.relation.referencesShallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101
dc.relation.referencesShallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 (16)
dc.relation.referencesShallcross, S., Sharma, S., Pankratov, O.A., Erratum: Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81
dc.relation.referencesCaro-Lopera, F.J., Bravais-Moiré Theory: Technical Report (2017), University of Medellin
dc.relation.referencesTiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-43
dc.relation.referencesYokota, M., Sesay, M., Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape (2008) J. Opt. Soc. Amer. A, 25, pp. 1691-1696
dc.relation.referencesZhu, N., Liu, W., Zhang, N., Wang, J., Cheng, C., Photonic band gap failure in photonic crystal devices (2011) Optik, 122, pp. 1625-1627
dc.relation.referencesSolli, D.R., Hickmann, J.M., Study of the properties of 2d photonic crystal structures as a function of the air-filling fraction and refractive index contrast (2011) Opt. Mater., 33, pp. 523-526
dc.relation.referencesGaji?, R., Jovanovi?, D., Hingerl, K., R, J., Meisels, C., Kuchar, F., 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-1630)) (2008) Opt. Mater., 30, pp. 1065-1069
dc.relation.referencesJovanovi?, D., Gaji?, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058
dc.relation.referencesBerman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Yu. E. Lozovik, C., Graphene-based photonic crystal (2018) Phys. Lett. A, 374, pp. 4784-4786
dc.relation.referencesBerman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Lozovik, Y.E., On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals (2018) Phys. Lett. A, 382, p. 429
dc.relation.referencesTaflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), third ed. Artech House Boston
dc.relation.referencesSözüer, H.S., Haus, J.W., Inguva, R., Photonic bands: Convergence problems with the plane-wave method (1992) Phys. Rev. B., 45, pp. 13962-13972
dc.relation.referencesSukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), first ed. Springer-Verlag Berlin Heidelberg
dc.relation.referencesUng, B., Study of the interaction of surface waves with a metallic nano-slit via the finite-difference time-domain method (2007), (M.Sc. thesis)

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record