Mostrar el registro sencillo del ítem

dc.creatorAcelas N.
dc.creatorFlórez E.
dc.creatorHadad C.
dc.creatorMerino G.
dc.creatorRestrepo A.
dc.date2019
dc.date.accessioned2020-04-29T14:53:54Z
dc.date.available2020-04-29T14:53:54Z
dc.identifier.issn10895639
dc.identifier.urihttp://hdl.handle.net/11407/5756
dc.descriptionTwo stochastic methods in conjunction with ab initio computations were used to explore the potential energy surfaces for the microsolvation of SO4 2- with up to six explicit water molecules. At least three water molecules are needed to stabilize the Coulomb repulsion that prevents the existence of isolated SO4 2-. The formal charge in SO4 2- is strong enough to induce water dissociation and subsequent microsolvation of the resulting HSO4 -, OH- ionic pair. Hydrogen bonds characterized as having complex contributions from covalency and from ionicity are at play stabilizing [SO4(H2O)n]2- clusters. Ionicity and covalency act concomitantly rather than opposedly to strengthen both intermolecular interactions and the resulting O-H bond in HSO4 - after proton abstraction. Copyright © 2019 American Chemical Society.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073095320&doi=10.1021%2facs.jpca.9b07033&partnerID=40&md5=c2033e43ea187133b7da8c520602ac92
dc.sourceJournal of Physical Chemistry A
dc.subjectHydrogen bonds
dc.subjectPotential energy
dc.subjectQuantum chemistry
dc.subjectStochastic systems
dc.subjectAb initio computations
dc.subjectCoulomb repulsions
dc.subjectExplicit water molecules
dc.subjectIntermolecular interactions
dc.subjectProton abstraction
dc.subjectStochastic methods
dc.subjectWater dissociation
dc.subjectWater molecule
dc.subjectMolecules
dc.titleA Comprehensive Picture of the Structures, Energies, and Bonding in [SO4(H2O)n]2-, n = 1-6
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1021/acs.jpca.9b07033
dc.relation.citationvolume123
dc.relation.citationissue40
dc.relation.citationstartpage8650
dc.relation.citationendpage8656
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAcelas, N., Grupo de Materiales Con Impacto, Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Flórez, E., Grupo de Materiales Con Impacto, Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Hadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Merino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida Km 6 Antigua Carretera A Progreso, Apdo. Postal 73 Cordemex, 97310, Mérida, Yuc, Mexico; Restrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesRamanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., Aerosols, Climate, and the Hydrological Cycle (2001) Science, 294, pp. 2119-2124
dc.relation.referencesAbbatt, J.P.D., Benz, S., Cziczo, D.J., Kanji, Z., Lohmann, U., Möhler, O., Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation (2006) Science, 313, pp. 1770-1773
dc.relation.referencesLaaksonen, A., Kulmala, M., Berndt, T., Stratmann, F., Mikkonen, S., Ruuskanen, A., Lehtinen, K.E.J., Petäjä, T., SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications (2008) Atmos. Chem. Phys., 8, pp. 7255-7264
dc.relation.referencesHarrison, R.G., Carslaw, K.S., Ion-aerosol-cloud processes in the lower atmosphere (2003) Rev. Geophys., 41, pp. 1-26
dc.relation.referencesYu, F., Turco, R.P., From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation (2001) J. Geophys. Res. Atmospheres, 106, pp. 4797-4814
dc.relation.referencesYu, F., Turco, R.P., Kärcher, B., Schröder, F.P., On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes (1998) Geophys. Res. Lett., 25, pp. 3839-3842
dc.relation.referencesKulmala, M., Pirjola, L., Mäkelä, J.M., Stable sulphate clusters as a source of new atmospheric particles (2000) Nature, 404, pp. 66-69
dc.relation.referencesFinlayson-Pitts, B.J., Pitts, J.N., Finlayson-Pitts, B.J., Pitts, J.N., Overview of the Chemistry of Polluted and Remote Atmospheres (2000) Chemistry of the Upper and Lower Atmosphere, pp. 1-14. , Academic Press: San Diego, CA
dc.relation.referencesTwomey, S., (1977) Atmospheric Aerosols, 7. , Developments in Atmospheric Science
dc.relation.referencesElsevier: Amsterdam, The Netherlands
dc.relation.referencesCarslaw, K.S., Peter, T., Clegg, S.L., Modeling the composition of liquid stratospheric aerosols (1997) Rev. Geophys., 35, pp. 125-154
dc.relation.referencesMolina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D., Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds (1993) Science, 261, pp. 1418-1423
dc.relation.referencesKoop, T., Carslaw, K.S., Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds (1996) Science, 272, pp. 1638-1641
dc.relation.referencesMarkovich, D., Physiological Roles and Regulation of Mammalian Sulfate Transporters (2001) Physiol. Rev., 81, pp. 1499-1533
dc.relation.referencesZhang, Y., Cremer, P.S., Interactions between macromolecules and ions: The Hofmeister series (2006) Curr. Opin. Chem. Biol., 10, pp. 658-663
dc.relation.referencesBoldyrev, A.I., Simons, J., Isolated SO4 2- and PO4 3- Anions Do Not Exist (1994) J. Phys. Chem., 98, pp. 2298-2300
dc.relation.referencesWang, X.-B., Nicholas, J.B., Wang, L.-S., Electronic instability of isolated SO4 2- and its solvation stabilization (2000) J. Chem. Phys., 113, pp. 10837-10840
dc.relation.referencesBlades, A.T., Kebarle, P., Study of the Stability and Hydration of Doubly Charged Ions in the Gas Phase: SO4 2-, S2O6 2-, S2O8 2-, and Some Related Species (1994) J. Am. Chem. Soc., 116, pp. 10761-10766
dc.relation.referencesHadad, C.Z., Florez, E., Acelas, N., Merino, G., Restrepo, A., Microsolvation of small cations and anions (2019) Int. J. Quantum Chem., 119, p. e25766
dc.relation.referencesFlórez, E., Acelas, N., Ramírez, F., Hadad, C., Restrepo, A., Microsolvation of F- (2018) Phys. Chem. Chem. Phys., 20, pp. 8909-8916
dc.relation.referencesRomero, J., Reyes, A., David, J., Restrepo, A., Understanding microsolvation of Li+: Structural and energetical analyses (2011) Phys. Chem. Chem. Phys., 13, pp. 15264-15271
dc.relation.referencesGonzalez, J.D., Flórez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777
dc.relation.referencesWong, R.L., Williams, E.R., Dissociation of SO4 2- (H2O)n Clusters, n = 3 - 17 (2003) J. Phys. Chem. A, 107, pp. 10976-10983
dc.relation.referencesCabellos, J., Ortiz-Chi, A., Ramírez, A., Merino, G., (2013) Bilatu 1.0, , Cinvestav: Mérida, Yucatán, México
dc.relation.referencesGrande-Aztatzi, R., Martínez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural evolution of small gold clusters doped by one and two boron atoms (2014) J. Comput. Chem., 35, pp. 2288-2296
dc.relation.referencesRamírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A hierarchical algorithm for molecular similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466
dc.relation.referencesPérez, J., Restrepo, A., (2008) ASCEC V-02: Annealing Simulado Con Energía Cuántica. Property, Development, and Implementation: Grupo de Química-Física Teórica, , Universidad de Antioquia: Medellín, Colombia
dc.relation.referencesPérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659
dc.relation.referencesLambrecht, D.S., McCaslin, L., Xantheas, S.S., Epifanovsky, E., Head-Gordon, M., Refined energetic ordering for sulphate-water (n = 3 - 6) clusters using high-level electronic structure calculations (2012) Mol. Phys., 110, pp. 2513-2521
dc.relation.referencesLambrecht, D.S., Clark, G.N.I., Head-Gordon, T., Head-Gordon, M., Exploring the Rich Energy Landscape of Sulfate-Water Clusters SO4 2- (H2O)n=3-7: An Electronic Structure Approach (2011) J. Phys. Chem. A, 115, pp. 11438-11454
dc.relation.referencesKorchagina, K.A., Simon, A., Rapacioli, M., Spiegelman, F., Cuny, J., Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach (2016) J. Phys. Chem. A, 120, pp. 9089-9100
dc.relation.referencesMardirossian, N., Lambrecht, D.S., McCaslin, L., Xantheas, S.S., Head-Gordon, M., The Performance of Density Functionals for Sulfate-Water Clusters (2013) J. Chem. Theory Comput., 9, pp. 1368-1380
dc.relation.referencesFrisch, M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Scalmani, G., Barone, V., Mennucci, B., Li, X., (2009) Gaussian 09, , Revision A.01
dc.relation.referencesGaussian, Inc: Wallingford, CT
dc.relation.referencesGlendening, E.D., Weinhold, F., NBO 6.0, , http://nbo6.chem.wisc.edu/, Theoretical Chemistry Institute, University of Wisconsin: Madison, WI
dc.relation.referencesWeinhold, C.L.A.F., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley: New York
dc.relation.referencesBader, R., (1990) Atoms in Molecules. A Quantum Theory, , Oxford University Press: Oxford, U.K
dc.relation.referencesHincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural Studies of the Water Hexamer (2010) J. Phys. Chem. A, 114, pp. 7809-7814
dc.relation.referencesRamírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, pp. 229-233
dc.relation.referencesAcelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310
dc.relation.referencesMata, I., Alkorta, I., Molins, E., Espinosa, E., Electrostatics at the Origin of the Stability of Phosphate-Phosphate Complexes Locked by Hydrogen Bonds (2012) ChemPhysChem, 13, pp. 1421-1424
dc.relation.referencesMata, I., Alkorta, I., Molins, E., Espinosa, E., Tracing environment effects that influence the stability of anion-anion complexes: The case of phosphate-phosphate interactions (2013) Chem. Phys. Lett., 555, pp. 106-109
dc.relation.referencesWeinhold, F., Klein, R., Anti-Electrostatic Hydrogen Bonds (2014) Angew. Chem., Int. Ed., 53, pp. 11214-11217
dc.relation.referencesKarton, A., Martin, J., Explicitly correlated Wn theory: W1-F12 and W2-F12 (2012) J. Chem. Phys., 136, p. 124114
dc.relation.referencesFlórez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923
dc.relation.referencesVargas-Caamal, A., Cabellos, J., Ortiz-Chi, F., Rzepa, H., Restrepo, A., Merino, G., How Many Water Molecules Does it Take to Dissociate HCl? (2016) Chem. - Eur. J., 22, pp. 2812-2818
dc.relation.referencesLimbach, H., Pietrzak, M., Sharif, S., Tolstoy, P., Shenderovich, I., Smirnov, S., Golubev, N., Denisov, G., NMR Parameters and Geometries of OHN and ODN Hydrogen Bonds of Pyridine-Acid Complexes (2004) Chem. - Eur. J., 10, pp. 5195-5204
dc.relation.referencesEspinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542
dc.relation.referencesMata, I., Alkorta, I., Molins, E., Espinosa, E., Universal Features of the Electron Density Distribution in Hydrogen-Bonding Regions: A Comprehensive Study Involving H···X (X = H, C, N, O, F, S, Cl, ?) Interactions (2010) Chem. - Eur. J., 16, pp. 2442-2452
dc.relation.referencesLinus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press: Ithaca, NY
dc.relation.referencesCoulson, C.A., (1961) Valence, , Oxford University Press
dc.relation.referencesCollins, K.D., Washabaugh, M.W., The Hoffmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422
dc.relation.referencesO'Brien, J.T., Williams, E.R., Effects of Ions on Hydrogen-Bonding Water Networks in Large Aqueous Nanodrops (2012) J. Am. Chem. Soc., 134, pp. 10228-10236
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem