Mostrar el registro sencillo del ítem

dc.creatorRendón M.I.
dc.creatorViviescas J.C.
dc.creatorOsorio J.P.
dc.creatorHernández M.S.
dc.date2020
dc.date.accessioned2020-04-29T14:53:54Z
dc.date.available2020-04-29T14:53:54Z
dc.identifier.issn9603182
dc.identifier.urihttp://hdl.handle.net/11407/5758
dc.descriptionSoils derived from volcanic ash are deposits formed from the weathering of the ejected material during volcanic activity. Volcanic ash is commonly known in geotechnical engineering as a difficult and unwanted material. The difficulties are related to the high-water content, high liquid limits, low unit weights, and high void ratios, which translates into possible engineering problems (e.g. compressibility and collapsibility). The characterization of these materials is important because volcanic soils represent 0.84% of the terrestrial soil surface, 60% of which are located in tropical zones. These percentages represent areas with a high human population and constant demographic and economic growth. This paper presents the chemical, mineralogical and geotechnical index properties characterization of soils derived from volcanic ashes through laboratory testing and compares them with the results found in the literature. The SEM results shows the high void reported in the literature. The index properties obtained coincide with the ranges reported. However, lower values of dry unit weight were observed, which are related to the transportation processes of the particles and with higher index properties values due to mineralogical components such as allophane. Therefore, the study of volcanic ash soils requires a rigorous knowledge and understanding of the soil formation, depositional environment, and mineralogy. The chemical characterization of the volcanic ash plays an important role to understand water retention characteristics and their influence on the different geotechnical properties. © 2020, Springer Nature Switzerland AG.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078900338&doi=10.1007%2fs10706-020-01219-3&partnerID=40&md5=306a3b0211410c86243ba85985479917
dc.sourceGeotechnical and Geological Engineering
dc.subjectLaboratory tests
dc.subjectSoil characterization
dc.subjectVariability
dc.subjectVolcanic ash soils
dc.subjectEconomics
dc.subjectGeotechnical engineering
dc.subjectMinerals
dc.subjectPopulation dynamics
dc.subjectPopulation statistics
dc.subjectSoils
dc.subjectTropics
dc.subjectVolcanoes
dc.subjectWeathering
dc.subjectChemical characterization
dc.subjectDepositional environment
dc.subjectGeotechnical index properties
dc.subjectLaboratory test
dc.subjectSoil characterization
dc.subjectVariability
dc.subjectVolcanic ash soil
dc.subjectWater retention characteristics
dc.subjectSoil testing
dc.titleChemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.1007/s10706-020-01219-3
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRendón, M.I., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Viviescas, J.C., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Osorio, J.P., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, School of Civil and Structural Engineering, Technological University Dublin, City Campus, Bolton Street, Dublin 1, D01 K822, Ireland; Hernández, M.S., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, School of Engineering, Civil Engineering Program, Universidad de Medellín, Medellín, Colombia
dc.relation.references(2010) Reglamento De Construcción Sismo Resistente (NSR-10), , AIS
dc.relation.referencesAkbas, S.O., Kulhawy, F.H., Characterization and estimation of geotechnical variability in Ankara clay: a case history (2010) Geotech Geol Eng, 28, pp. 619-631
dc.relation.referencesArnalds, Ó., Bartoli, F., Buurman, P., Óskarsson, H., Stoops, G., García-Rodeja, E., (2007) Soils of volcanic regions in Europe, , Springer, Berlin
dc.relation.references(2011) Standard practice for classification of soils for engineering purposes (unified soil classification system), , ASTM International, West Conshohocken
dc.relation.referencesBaecher, G.B., Christian, J.T., (2003) Reliability and statistics in geotechnical engineering, 1. , Wiley, Hoboken
dc.relation.referencesBetancur, Y., Builes, M., Millán, Á., Variación de las Propiedades Mecánicas de Arcillas Alófanas en Colombia al Variar el Grado de Saturación (2013) Rev EIA, 10 (20), pp. 173-181
dc.relation.referencesDahlgren, R., Shoji, S., Nanzyo, M., Mineralogical characteristics of volcanic ash soils (1993) Volcanic ash soils: genesis, properties and utilization, pp. 101-143. , 1, Elsevier, Amsterdam
dc.relation.referencesForero, C., Gálvez, P., Estudios de la estructura de las cenizas volcánicas de Armenia y su relación con el comportamiento geotécnico (1999) X Jornadas Geotécnicas De La Ingeniería Colombiana. Boletín Colombiano De Geotecnia, , Fino y Ulloa, Sociedad Colombiana de Geotecnia
dc.relation.referencesGarcía-Leal, J.C., Colmenares, J.E., Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica (2011) Pan-Am CGS Geotechnical Conference
dc.relation.referencesGonzalez de Vallejo, L.I., Jimenez Salas, J.A., Leguey, S., Engineering geology of the tropical volcanic soils of La Laguna, Tenerife (1981) Eng Geol, 17, pp. 1-17
dc.relation.referencesHermelín, M., El estudio de las cenizas volcánicas en el departamento de Antioquia (1984) DYNA, 103, pp. 53-58
dc.relation.referencesHermosilla, M., Cardenas, J., Evaluación e identificación del potencial de colapso en suelos derivados de cenizas volcánicas del Sur de Chile (2012) Revista Científico Tecnológica Departamento Ingeniería de Obras Civiles - RIOC, 1, pp. 30-37
dc.relation.referencesHerrera, M.C., (2006) Suelos Derivados De Cenizas volcánicas En Colombia: Estudio Fundamental E Implicaciones En ingeniería, , University of the Andes
dc.relation.referencesHürlimann, M., Ledesma, A., Martí, J., Characterisation of a volcanic residual soil and its implications for large landslide phenomena: application to Tenerife, Canary Islands (2001) Eng Geol, 59, pp. 115-132
dc.relation.referencesJungerius, P.D., The properties of volcanic ash soils in dry parts of the Colombian Andes and their relation to soil erodibility (1975) CATENA, 2, pp. 69-80
dc.relation.referencesKitazono, Y., Suzuki, A., Kajiwara, M., Aramaki, S., Contribution of micro structure to repeated loading effect on compacted allophaneous volcanic ash soil (1987) Soils Found, 27 (4), pp. 23-33
dc.relation.referencesKnight, D.J., Geotechnical properties and behavior of the Monasavu halloysite clay, Fiji (1986) Clay Miner, 21, pp. 311-332
dc.relation.referencesLacasse, S., Nadim, F., Risk and reliability in geotechnical engineering (1998) Fourth International Conferrence on Case Histories in Geotechnical Engineering, pp. 1172-1192. , St. Louis
dc.relation.referencesLiu, X., Yang, J., Wang, G., Chen, L., Small-strain shear modulus of volcanic granular soil: an experimental investigation (2016) Soil Dyna Earthq Eng, 86, pp. 15-24
dc.relation.referencesLizcano, A., Herrera, M.C., Santamarina, J.C., Suelos derivados de cenizas volcánicas en Colombia (2006) Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 6 (2), pp. 167-198
dc.relation.referencesMatsumura, S., Miura, S., Yokohama, S., Kawamura, S., Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze-thaw sequence (2015) Soils Found, 55 (1), pp. 86-98
dc.relation.referencesMendoza, M.J., Remoldeling and drying effects upon plasticity limits of residual soils (1985) Proceedings of the first international conference on geomechanics in tropical lateritic and saprolitic soils, 2, pp. 145-155. , Technical Sessions, Brasilia, Brazil
dc.relation.referencesMeyer, V., Larkin, T., Pender, M., The shear strenght and dynamic shear stiffness of some New Zealand volcanic ash soils (2005) Soils Found, 45 (3), pp. 9-20
dc.relation.referencesMiura, S., Yagi, K., Mechanical behaviour and particle crushing of volcanic coarse-grained soils in Japan (2003) Characterisation and engineering properties of natural soils, 2, pp. 1169-1204. , Tan TS, Phoon KK, Hight DW, Leroueil S, (eds), Swets Zeitlinger B.V/A.A. Balkema, Lisse
dc.relation.referencesMolina, G., Hernández, E., Castillo, C., Determinación de la correlación entre el coeficiente de compresión y propiedades índice en suelos de expansión urbana de Pereira (2012) AVANCES Investigación En Ingeniería, 9 (2), pp. 72-79
dc.relation.referencesMoore, P.J., Styles, J.R., Some characteristics of a volcanic ash soil, geomechanics in tropical soils (1988) Procedings of the Second International Conference in Tropical Soils, p. 161. , Singapore
dc.relation.referencesMoroto, N., Mechanical behavior of two typical compacted volcanic soils in Hachinohe, Japan under different sample preparation methods (1991) Soils Found, 31 (2), pp. 108-116
dc.relation.referencesNanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207
dc.relation.referencesO Rourke, T.D., Crespo, E., Geotechnical properties of cemented volcanic soil (1989) J Geotech Eng, 114 (10), pp. 1126-1147
dc.relation.referencesPhoon, K.-K., Kulhawy, F.H., Characterization of geotechnical variability (1999) Can Geotech J, 36, pp. 612-624
dc.relation.referencesPicarelli, L., Evangelista, A., Rolandi, G., Paone, A., Nicotera, M.V., Olivares, L., Scotto di Santolo, A., Rolandi, M., Mechanical properties of pyroclastic soils in Campania Region (2007) Characterisation and engineering properties of natural soils, 4, pp. 2331-2383. , Phoon KK, Hight DW, Leroueil S, Tan TS, (eds), Taylor & Francis/Balkema, London
dc.relation.referencesRao, S.M., Mechanistic approach to the shear strength behaviour of allophanitic soils (1995) Eng Geol, 40, pp. 215-221
dc.relation.referencesRao, S.M., Role of apparent cohesion in the stability of Dominican allophane soil slopes (1996) Eng Geol, 43, pp. 265-279
dc.relation.referencesSezaki, M., Kitamura, R., Yasufuku, N., Hirooka, A., Ochiai, H., Yokota, H., Sawayama, S., Matsumoto, K., Geodisasters in Kyushu area caused by typhoon No. 14 in September 2005 (2006) Soils Found, 46 (6), pp. 855-867
dc.relation.referencesShoji, S., Dahlgren, R., Nanzyo, M., Chapter 1 Terminology, Concepts and Geographic Distribution of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 1-5
dc.relation.referencesNanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207
dc.relation.referencesShoji, S., Nanzyo, M., Dahlgren, R., Chapter 8 Productivity and Utilization of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 209-251
dc.relation.referencesSo, E.-K., Statistical correlation between allophane content and index properties for volcanic cohesive soil (1998) Soils Found, 38 (4), pp. 85-93
dc.relation.referencesTerlien, M.T.J., Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) (1997) Geomorphology, 20, pp. 165-175
dc.relation.referencesTobón, J.I., Arias, D.E., Jaramillo, M., Propiedades físicas e hidráulicas de las cenizas volcánicas en la terraza de Llanogrande (Rionegro, Antioquia) (2004) DYNA, 71 (142), pp. 1-10
dc.relation.referencesToro, G., Hermelín, M., Tefraestratigrafía Colombiana (2012) Revista Universidad Eafit, 86, pp. 81-84
dc.relation.referencesVan Ranst, E., Utami, S.R., Shamshuddin, J., Andisols on volcanic ash from Java island, Indonesia: physico-chemical properties and classification (2002) Soil Sci, 167 (1), pp. 68-79
dc.relation.referencesVerdugo, R., Singularities of geotechnical properties of complex soils in seismic regions (2008) J Geotechn Geoenviron Eng, 134 (7), pp. 982-992
dc.relation.referencesViviescas, J.C., Osorio, J.P., Cañón, J.E., Reliability-based designs procedure of earth retaining walls in geotechnical engineering (2017) Obras y Proyectos, 22, pp. 50-60
dc.relation.referencesViviescas, J.C., Osorio, J.P., Griffiths, D.V., Cluster analysis for the determination of the undrained strength tendency from SPT in mudflows and residual soils (2019) Bull Eng Geol Environ, 78 (7), pp. 5039-5054
dc.relation.referencesWesley, L.D., Some basic engineering properties of halloysite and allophane clays in Java, Indonesia (1973) Géotechnique, 23 (4), pp. 471-494
dc.relation.referencesWesley, L.D., Shear strength properties of halloysite and allophane clays in Java, Indonesia (1977) Géotechnique, 27 (2), pp. 125-136
dc.relation.referencesWesley, L.D., Consolidation behaviour of allophane clays (2001) Géotechnique, 51 (10), pp. 901-904
dc.relation.referencesWesley, L.D., (2003) Geotechnical Properties of Two Volcanic Soils. In: Geotechnics on the Volcanic Edge, , Tauranga, March 2003, New Zealand geotechnical society symposium. The institution of professional engineers New Zealand
dc.relation.referencesYamashita, S., Ito, Y., Hori, T., Suzuki, T., Murata, Y., Geotechnical properties of liquefied volcanic soil ground by 2003 Tokachi-Oki Earthquake (2005) Proceedings of the 16Th International Conference on Soil Mechanics and Geotechnical Engineering, 16 (4), pp. 2737-2740. , https://doi.org/10.3233/978-1-61499-656-9-2737
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem