REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated velocity estimation by deep learning based seismic-to-velocity mapping

Thumbnail
Share this
Author
Duque L.
Gutiérrez G.
Arias C.
Rüger A.
Jaramillo H.

Citación

       
TY - GEN T1 - Automated velocity estimation by deep learning based seismic-to-velocity mapping AU - Duque L. AU - Gutiérrez G. AU - Arias C. AU - Rüger A. AU - Jaramillo H. UR - http://hdl.handle.net/11407/5775 PB - EAGE Publishing BV AB - We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved. ER - @misc{11407_5775, author = {Duque L. and Gutiérrez G. and Arias C. and Rüger A. and Jaramillo H.}, title = {Automated velocity estimation by deep learning based seismic-to-velocity mapping}, year = {}, abstract = {We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved.}, url = {http://hdl.handle.net/11407/5775} }RT Generic T1 Automated velocity estimation by deep learning based seismic-to-velocity mapping A1 Duque L. A1 Gutiérrez G. A1 Arias C. A1 Rüger A. A1 Jaramillo H. LK http://hdl.handle.net/11407/5775 PB EAGE Publishing BV AB We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
We propose a novel method for velocity estimation that leverages the newest advances in Deep Learning (DL) technology. This method is fully automatic and maps seismic shot-domain data to corresponding depth-domain velocity fields via two neural networks. Our new method is conceptually different from conventional methods such as seismic tomography or Full Waveform Inversion (FWI) that minimize a fixed objective function. Here, a system of neural networks automatically and continuously learns an objective function while training the seismic-to-velocity mapping. The newly introduced method avoids many of the drawbacks of conventional velocity estimation techniques, such as dependence on initial models or cycle-skipping. It uses the full seismic wavefield and avoids picking of first-arrival traveltimes. The system needs to be trained with hundreds or thousands of examples of seismic data paired with their corresponding velocity models relevant for the current project. Training the system is the main computationally demanding step and produces a mapping function that contains the seismic know-how for the presumed geologic setting. The computational cost of the subsequent estimation of velocity from new seismic data is negligent. Our first tests on complex two-dimensional synthetic data produce impressive results, underlining the potential of DL for velocity analysis. © 81st EAGE Conference and Exhibition 2019. All rights reserved.
URI
http://hdl.handle.net/11407/5775
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com