Show simple item record

dc.creatorJimenez-Orozco C.
dc.creatorFlórez E.
dc.creatorMontoya A.
dc.creatorRodriguez J.A.
dc.descriptionDensity functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in stability: ?-WC(0001)-C > ?-WC(0001)-W > Pt(111) > ?-WC(001), with the binding energy varying in the range of -0.72 to -2.91 eV. The sub-surface layers play a crucial role in the binding, favoring a charge reorganization at extended ranges (above 6 Å) from bulk towards the surface, however, the electronic structure of the surface was modified only in the topmost layer. The surface sites for geometric C2H4 activation were identified, leading to a surface distortion due to an upwards shifting of surface atoms in the range 0.13-0.61 Å observed in Pt(111), ?-WC(0001)-C, and ?-WC(001), with distortion energies of 0.13, 0.15 and 0.61 eV, respectively. The activation of C2H4 on tungsten carbides was compared with other transition metal carbide surfaces, which leads to a general classification of the elongation of carbon-carbon bond into a set of only three groups. If the interest is to activate ethylene CC bond, the surface sites and the binding modes should be those of the groups II and III. The infrared spectra show mainly four useful signals as a fingerprint to support and complement future experiments. The results of this work indicate that the ?-WC-W surface could be directly responsible for the catalytic performance, while the binding of olefins on ?-WC-C could cause surface poisoning. The metastable ?-WC(001) surface could be a promising system as compared to the known ?-WC(0001) surface, but challenges arise regarding its synthesis, stability and catalytic performance. These results pave the way to address further experimental and theoretical studies focused on the hydrogenation of ethylene and more complex unsaturated hydrocarbons. © the Owner Societies.
dc.publisherRoyal Society of Chemistry
dc.sourcePhysical Chemistry Chemical Physics
dc.titleBinding and activation of ethylene on tungsten carbide and platinum surfaces
dc.publisher.programFacultad de Ciencias Básicas
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationJimenez-Orozco, C., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Flórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Montoya, A., University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia; Rodriguez, J.A., Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973, United States
dc.relation.referencesLevy, R., Boudart, M., (1973) Science, 181, pp. 547-549
dc.relation.referencesKojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1979) J. Catal., 59, pp. 472-474
dc.relation.referencesKojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1982) J. Catal., 73, pp. 128-135
dc.relation.referencesXu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A., (2014) Catal. Lett., 144, pp. 1418-1424
dc.relation.referencesLiu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425
dc.relation.referencesArdakani, S.J., Smith, K.J., (2011) Appl. Catal., A, 403, pp. 36-47
dc.relation.referencesArdakani, S.J., Liu, X., Smith, K.J., (2007) Appl. Catal., A, 324, pp. 9-19
dc.relation.referencesDhandapani, B., Clair, T.St., Oyama, S.T., (1998) Appl. Catal., A, 168, pp. 219-228
dc.relation.referencesVitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira-Almao, P., (2015) Catal. Today, 250, pp. 123-133
dc.relation.referencesLiu, X., Tkalych, A., Zhou, B., Köster, A.M., Salahub, D.R., (2013) J. Phys. Chem. C, 117, pp. 7069-7080
dc.relation.referencesHwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesVértes, G., Horányi, G., Szakács, S., (1973) J. Chem. Soc., Perkin Trans. 2, pp. 1400-1402
dc.relation.referencesRocha, A.S., Rocha, A.B., Da Silva, V.T., (2010) Appl. Catal., A, 379, pp. 54-60
dc.relation.referencesBrillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., (1998) J. Electron Spectros. Relat. Phenomena, 88-91, pp. 809-815
dc.relation.referencesBrillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., (1998) J. Electron Spectrosc. Relat. Phenom., 96, pp. 53-60
dc.relation.referencesMoreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir, 17, pp. 1752-1756
dc.relation.referencesLemaitre, J., Benoit, V., Leclercq, L., (1986) J. Catal., 99, pp. 415-427
dc.relation.referencesKurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , Springer International Publishing, 1st edn
dc.relation.referencesLiu, A.Y., Cohen, M.L., (1988) Solid State Commun., 67, pp. 907-910
dc.relation.referencesAntoni-Zdziobek, A., Shen, J.Y., Durand-Charre, M., (2008) Int. J. Refract. Met. Hard Mater., 26, pp. 372-382
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122, p. 174709
dc.relation.referencesTong, Y.-J., Wu, S.-Y., Chen, H.-T., (2018) Appl. Surf. Sci., 428, pp. 579-585
dc.relation.referencesZhang, X., Yang, Z., Wu, R., (2018) Nanoscale, 10, pp. 4753-4760
dc.relation.referencesZhang, X., Lu, Z., Yang, Z., (2016) Appl. Surf. Sci., 389, pp. 455-461
dc.relation.referencesLiang, Y., Chen, L., Ma, C., (2017) Surf. Sci., 656, pp. 7-16
dc.relation.referencesXi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, p. 39912
dc.relation.referencesZheng, W., Chen, L., Ma, C., (2014) Comput. Theor. Chem., 1039, pp. 75-80
dc.relation.referencesVasi?, D.D., Pa ti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
dc.relation.referencesVasi? Ani?ijevi?, D.D., Nikoli?, V.M., Mar?eta-Kaninski, M.P., Pa ti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2016) J. Phys. Chem. C, 120, pp. 13531-13540
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesKresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Condens. Matter Mater. Phys., 13, pp. 5188-5192
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
dc.relation.referencesTang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204
dc.relation.referencesSanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesCremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., (1996) J. Am. Chem. Soc., 118, pp. 2942-2949
dc.relation.referencesCremer, P.S., Somorjai, G.A., (1995) J. Chem. Soc., Faraday Trans., 91, p. 3671
dc.relation.referencesTillekaratne, A., Simonovis, J.P., Zaera, F., (2016) Surf. Sci., 652, pp. 134-141

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record