Mostrar el registro sencillo del ítem

dc.creatorUsuga A.F.
dc.creatorCorrea J.D.
dc.creatorGallego J.
dc.creatorEspinal J.F.
dc.date2020
dc.date.accessioned2020-04-29T14:53:59Z
dc.date.available2020-04-29T14:53:59Z
dc.identifier.issn9270256
dc.identifier.urihttp://hdl.handle.net/11407/5780
dc.descriptionThe effect of interaction between (4,4)@(9,9) double-walled carbon nanotube and Ni(111) surface is studied by density functional theory calculations, including van der Waals interaction effects. Different modes of adsorption were evaluated. Calculations of adsorption energy, density of states, and charge redistribution are performed. According to adsorption energy, it was found that the most probable adsorption mode is the called bridge/top mode, were Ni atoms of surface top layer form a bridge with carbon bonds of the double-walled carbon nanotube. Additionally, a strong structural deformation for bridge/top adsorption mode is observed together with dipoles induction on the external wall of the double-walled carbon nanotube. The presence of dipoles suggests that the double-walled carbon nanotube over Ni(111) surface is more reactive than the isolated carbon nanotube and this could be employed as an electron donor system. © 2019 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076670739&doi=10.1016%2fj.commatsci.2019.109457&partnerID=40&md5=79264226de8eb3725bc76ea02e93e37b
dc.sourceComputational Materials Science
dc.subjectdipole formation
dc.subjectstructural deformation
dc.subjectvan der Waals interaction
dc.subjectAdsorption
dc.subjectDeformation
dc.subjectDensity functional theory
dc.subjectNanotubes
dc.subjectNickel
dc.subjectVan der Waals forces
dc.subjectAdsorption energies
dc.subjectCharge redistribution
dc.subjectDensity of state
dc.subjectdipole formation
dc.subjectDouble walled carbon nanotubes
dc.subjectStructural deformation
dc.subjectVan der Waals interaction effect
dc.subjectVan Der Waals interactions
dc.subjectMultiwalled carbon nanotubes (MWCN)
dc.titleDouble-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.commatsci.2019.109457
dc.relation.citationvolume174
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUsuga, A.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Gallego, J., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Espinal, J.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesFrank, S., Poncharal, P., Wang, Z.L., Heer, W.A.D., Carbon nanotube quantum resistors (1998) Science, 280 (5370), pp. 1744-1746
dc.relation.referencesTans, S.J., Verschueren, A.R.M., Dekker, C., Room-temperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52
dc.relation.referencesJavey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Ballistic carbon nanotube field-effect transistors (2003) Nature, 424, pp. 654-657
dc.relation.referencesKong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Adv. Mater., 13 (18), pp. 1384-1386
dc.relation.referencesLi, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M., Carbon nanotube sensors for gas and organic vapor detection (2003) Nano Lett., 3 (7), pp. 929-933
dc.relation.referencesWang, J., Carbon-nanotube based electrochemical biosensors: a review (2005) Electroanalysis, 17 (1), pp. 7-14
dc.relation.referencesXie, X.-L., Mai, Y.-W., Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review (2005) Mater. Sci. Eng.: R: Rep., 49 (4), pp. 89-112
dc.relation.referencesColeman, J.N., Khan, U., Blau, W.J., Gun, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube polymer composites (2006) Carbon, 44 (9), pp. 1624-1652
dc.relation.referencesMa, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos.: Part A, 41 (10), pp. 1345-1367
dc.relation.referencesLi, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes (2003) Carbon, 41 (5), pp. 1057-1062
dc.relation.referencesRao, G.P., Lu, C., Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review (2007) Sep. Purif. Technol., 58 (1), pp. 224-231
dc.relation.referencesAi, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis (2011) J. Hazard. Mater., 198, pp. 282-290
dc.relation.referencesBaughman, R.H., Zakhidov, A.A., de Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297 (5582), pp. 787-792
dc.relation.referencesTeradal, N.L., Jelinek, R., Carbon nanomaterials in biological studies and biomedicine (2017) Adv. Healthc. Mater., 6 (17), pp. 1-36
dc.relation.referencesKumar, T., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.-H., Carbon nanotubes: a potential material for energy conversion and storage (2018) Prog. Energy Combust. Sci., 64, pp. 219-253
dc.relation.referencesHirsch, A., Functionalization of single-walled carbon nanotubes (2002) Angew. Chem.-Int. Ed., 41 (11), pp. 1853-1859
dc.relation.referencesSun, Y.-P., Fu, K., Lin, Y.I., Huang, W., Functionalized carbon nanotubes: properties and applications (2002) Acc. Chem. Res., 35 (12), pp. 1096-1104
dc.relation.referencesTasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136
dc.relation.referencesGeorgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, M., Prato, M., Decorating carbon nanotubes with metal or semiconductor nanoparticles (2007) J. Mater. Chem., 17, pp. 2679-2694
dc.relation.referencesQi, Q., Liu, H., Feng, W., Tian, H., Xu, H., Huang, X., Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods (2015) Comput. Mater. Sci., 96, pp. 268-276
dc.relation.referencesLiu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X., Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution (2014) Angew. Chem.-Int. Ed., 53 (26), pp. 6710-6714
dc.relation.referencesDeng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Environmental Science Highly active and durable non-precious-metal hydrogen evolution reaction (2014) Energy Environ. Sci., 7, pp. 1919-1923
dc.relation.referencesTessonnier, J.-P., Pesant, L., Ehret, G., Ledoux, M.J., Pham-huu, C., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde (2005) Appl. Catal. A: General, 288 (1-2), pp. 203-210
dc.relation.referencesReyhani, A., Mortazavi, S.Z., Mirershadi, S., Moshfegh, A.Z., Parvin, P., Golikand, A.N., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions (2011) J. Phys. Chem. C, 115 (14), pp. 6994-7001
dc.relation.referencesHuang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes (2002) Appl. Phys. A, 74 (3), pp. 387-391
dc.relation.referencesVander Wal, R.L., Ticich, T.M., Curtis, V.E., Substrate support interactions in metal-catalyzed carbon nanofiber growth (2001) Carbon, 39 (15), pp. 2277-2289
dc.relation.referencesBarcaro, G., Zhu, B., Hou, M., Fortunelli, A., Carbon clusters, surface growth, nickel surfaces, empirical potentials, density functional calculations (2012) Comput. Mater. Sci., 63, pp. 74-81
dc.relation.referencesSingh, N.B., Bhattacharya, B., Mondal, R., Nickel cluster functionalised carbon nanotube for CO molecule detection: a theoretical study (2016) Mol. Phys., 114 (5), pp. 671-680
dc.relation.referencesXu, H., Chu, W., Sun, W., Liu, Z., DFT studies of Ni cluster on graphene surface: effect of CO2 activation (2016) RSC Adv., 6, pp. 96545-96553
dc.relation.referencesThu, T., Nguyen, H., Le, V.K., Minh, C.L., Nguyen, N.H., A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube (2017) Comput. Theor. Chem., 1100, pp. 46-51
dc.relation.referencesBanhart, F., Charlier, J., Ajayan, P.M., Dynamic behavior of nickel atoms in graphitic networks (2000) Phys. Rev. Lett., 84 (4), pp. 686-689
dc.relation.referencesGallego, J., Barrault, J., Batiot-dupeyrat, C., Mondragon, F., Intershell spacing changes in MWCNT induced by metal CNT interactions (2013) Micron, 44, pp. 463-467
dc.relation.referencesDahal, A., Batzill, M., Graphene nickel interfaces: a review (2014) Nanoscale, 6 (5), pp. 2548-2562
dc.relation.referencesKuzubov, A.A., Kovaleva, E.A., Tomilin, F.N., Mikhaleva, N.S., Kuklin, A.V., On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates (2015) J. Magn. Magn. Mater., 396, pp. 102-105
dc.relation.referencesCha, J.J., Weyland, M., Briere, J.-F., Daykov, I.P., Three-dimensional imaging of carbon nanotubes deformed by metal islands (2007) Nano Lett., 7 (12), pp. 3770-3773
dc.relation.referencesNemec, N., Tománek, D., Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: an ab initio study (2006) Phys. Rev. Lett., 96 (76802), pp. 1-4
dc.relation.referencesSung, C.-M., Tai, M.-F., Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure (1997) Int. J. Refractory Met. Hard Mater., 15 (4), pp. 237-256
dc.relation.referencesMenon, M., Andriotis, A.N., Froudakis, G.E., Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls (2000) Chem. Phys. Lett., 320 (5-6), pp. 425-434
dc.relation.referencesStar, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Emery, V., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110 (42), pp. 21014-21020
dc.relation.referencesDurgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys. Rev. B, 67 201401, pp. 1-4
dc.relation.referencesVitale, V., Curioni, A., Andreoni, W., Metal-carbon nanotube contacts: the link between schottky barrier and chemical bonding (2008) J. Am. Chem. Soc., 130 (18), pp. 5848-5849
dc.relation.referencesFuentes-cabrera, M., Baskes, M.I., Melechko, A.V., Simpson, M.L., Bridge structure for the graphene/Ni(111) system: a first principles study (2008) Phys. Rev. B, 77 (35405), pp. 1-5
dc.relation.referencesSun, X., Entani, S., Yamauchi, Y., Pratt, A., Kurahashi, M., Spin polarization study of graphene on the Ni(111) surface by density functional theory calculations with a semiempirical long-range dispersion correction (2014) J. Appl. Phys., 114 143713, pp. 1-7
dc.relation.referencesSoler, M., Artacho, E., Gale, J.D., Garc, A., Junquera, J., Ordej, P., Daniel, S., The SIESTA method for ab initio order-N materials (2002) J. Phys.: Condensed Matter, 14, pp. 2745-2779
dc.relation.referencesMoseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 170201, pp. 1-4
dc.relation.referencesKlime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals (2010) J. Phys.: Condensed Matter, 22 (22201), pp. 1-5
dc.relation.referencesCarrasco, J., Liu, W., Michaelides, A., Tkatchenko, A., Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces (2014) J. Chem. Phys., 140 (84704), pp. 1-10
dc.relation.referencesMittendorfer, F., Garhofer, A., Redinger, J., Klime , J., Harl, J., Kresse, G., Graphene on Ni(111): strong interaction and weak adsorption (2011) Phys. Rev. B, 84 201401, pp. 1-4
dc.relation.referencesRivero, P., García-suárez, V.M., Pereñiguez, D., Utt, K., Yang, Y., Bellaiche, L., Park, K., Barraza-lopez, S., Systematic pseudopotentials from reference eigenvalue sets for DFT calculations (2015) Comput. Mater. Sci., 98, pp. 372-389
dc.relation.referencesQin, L.-C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., Iijima, S., The smallest carbon nanotube (2000) Nature, 408, p. 50
dc.relation.referencesTaylor, P., Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys., 19 (4), pp. 553-566
dc.relation.referencesRance, G.A., Marsh, D.H., Bourne, S.J., Reade, T.J., Khlobystov, A.N., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures (2010) ACS Nano, 4 (8), pp. 4920-4928
dc.relation.referencesPatra, A., Bates, J.E., Sun, J., Perdew, J.P., Properties of real metallic surfaces: effects of density functional semilocality and van der waals nonlocality (2017) Proc. Natl. Acad. Sci., 114 (44), pp. E9188-E9196
dc.relation.referencesZhang, W.-B., Chen, C., Tang, P.-Y., Zhang, W.-B., Chen, C., Tang, P.-Y., First-principles study for stability and binding mechanism of graphene/Ni(111) interface: role of vdW interaction (2014) J. Chem. Phys., 141 (44708), pp. 1-9
dc.relation.referencesChristian, M.S., Otero-de-la roza, E.R. Johnson, A., Johnson, E.R., Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model (2017) Carbon, 118, pp. 184-191
dc.relation.referencesGebhardt, J., Vi, F., Andreas, G., Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces (2012) Phys. Rev. B, 86 195431, pp. 1-15
dc.relation.referencesCusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M.C., Fortunelli, A., Iannaccone, G., Electrical properties of graphene- metal contacts (2017) Scientific Rep., 7, pp. 1-11
dc.relation.referencesZhang, C., Lee, B.-J., Li, H., Samdani, J., Kang, T.-H., Yu, J.-S., Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications (2018) Commun. Chem., 1, pp. 1-10
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem