Mostrar el registro sencillo del ítem
Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
dc.creator | Usuga A.F. | |
dc.creator | Correa J.D. | |
dc.creator | Gallego J. | |
dc.creator | Espinal J.F. | |
dc.date | 2020 | |
dc.date.accessioned | 2020-04-29T14:53:59Z | |
dc.date.available | 2020-04-29T14:53:59Z | |
dc.identifier.issn | 9270256 | |
dc.identifier.uri | http://hdl.handle.net/11407/5780 | |
dc.description | The effect of interaction between (4,4)@(9,9) double-walled carbon nanotube and Ni(111) surface is studied by density functional theory calculations, including van der Waals interaction effects. Different modes of adsorption were evaluated. Calculations of adsorption energy, density of states, and charge redistribution are performed. According to adsorption energy, it was found that the most probable adsorption mode is the called bridge/top mode, were Ni atoms of surface top layer form a bridge with carbon bonds of the double-walled carbon nanotube. Additionally, a strong structural deformation for bridge/top adsorption mode is observed together with dipoles induction on the external wall of the double-walled carbon nanotube. The presence of dipoles suggests that the double-walled carbon nanotube over Ni(111) surface is more reactive than the isolated carbon nanotube and this could be employed as an electron donor system. © 2019 Elsevier B.V. | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076670739&doi=10.1016%2fj.commatsci.2019.109457&partnerID=40&md5=79264226de8eb3725bc76ea02e93e37b | |
dc.source | Computational Materials Science | |
dc.subject | dipole formation | |
dc.subject | structural deformation | |
dc.subject | van der Waals interaction | |
dc.subject | Adsorption | |
dc.subject | Deformation | |
dc.subject | Density functional theory | |
dc.subject | Nanotubes | |
dc.subject | Nickel | |
dc.subject | Van der Waals forces | |
dc.subject | Adsorption energies | |
dc.subject | Charge redistribution | |
dc.subject | Density of state | |
dc.subject | dipole formation | |
dc.subject | Double walled carbon nanotubes | |
dc.subject | Structural deformation | |
dc.subject | Van der Waals interaction effect | |
dc.subject | Van Der Waals interactions | |
dc.subject | Multiwalled carbon nanotubes (MWCN) | |
dc.title | Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Facultad de Ciencias Básicas | |
dc.identifier.doi | 10.1016/j.commatsci.2019.109457 | |
dc.relation.citationvolume | 174 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Usuga, A.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Gallego, J., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Espinal, J.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | |
dc.relation.references | Frank, S., Poncharal, P., Wang, Z.L., Heer, W.A.D., Carbon nanotube quantum resistors (1998) Science, 280 (5370), pp. 1744-1746 | |
dc.relation.references | Tans, S.J., Verschueren, A.R.M., Dekker, C., Room-temperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52 | |
dc.relation.references | Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Ballistic carbon nanotube field-effect transistors (2003) Nature, 424, pp. 654-657 | |
dc.relation.references | Kong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Adv. Mater., 13 (18), pp. 1384-1386 | |
dc.relation.references | Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M., Carbon nanotube sensors for gas and organic vapor detection (2003) Nano Lett., 3 (7), pp. 929-933 | |
dc.relation.references | Wang, J., Carbon-nanotube based electrochemical biosensors: a review (2005) Electroanalysis, 17 (1), pp. 7-14 | |
dc.relation.references | Xie, X.-L., Mai, Y.-W., Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review (2005) Mater. Sci. Eng.: R: Rep., 49 (4), pp. 89-112 | |
dc.relation.references | Coleman, J.N., Khan, U., Blau, W.J., Gun, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube polymer composites (2006) Carbon, 44 (9), pp. 1624-1652 | |
dc.relation.references | Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos.: Part A, 41 (10), pp. 1345-1367 | |
dc.relation.references | Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes (2003) Carbon, 41 (5), pp. 1057-1062 | |
dc.relation.references | Rao, G.P., Lu, C., Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review (2007) Sep. Purif. Technol., 58 (1), pp. 224-231 | |
dc.relation.references | Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis (2011) J. Hazard. Mater., 198, pp. 282-290 | |
dc.relation.references | Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297 (5582), pp. 787-792 | |
dc.relation.references | Teradal, N.L., Jelinek, R., Carbon nanomaterials in biological studies and biomedicine (2017) Adv. Healthc. Mater., 6 (17), pp. 1-36 | |
dc.relation.references | Kumar, T., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.-H., Carbon nanotubes: a potential material for energy conversion and storage (2018) Prog. Energy Combust. Sci., 64, pp. 219-253 | |
dc.relation.references | Hirsch, A., Functionalization of single-walled carbon nanotubes (2002) Angew. Chem.-Int. Ed., 41 (11), pp. 1853-1859 | |
dc.relation.references | Sun, Y.-P., Fu, K., Lin, Y.I., Huang, W., Functionalized carbon nanotubes: properties and applications (2002) Acc. Chem. Res., 35 (12), pp. 1096-1104 | |
dc.relation.references | Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136 | |
dc.relation.references | Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, M., Prato, M., Decorating carbon nanotubes with metal or semiconductor nanoparticles (2007) J. Mater. Chem., 17, pp. 2679-2694 | |
dc.relation.references | Qi, Q., Liu, H., Feng, W., Tian, H., Xu, H., Huang, X., Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods (2015) Comput. Mater. Sci., 96, pp. 268-276 | |
dc.relation.references | Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X., Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution (2014) Angew. Chem.-Int. Ed., 53 (26), pp. 6710-6714 | |
dc.relation.references | Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Environmental Science Highly active and durable non-precious-metal hydrogen evolution reaction (2014) Energy Environ. Sci., 7, pp. 1919-1923 | |
dc.relation.references | Tessonnier, J.-P., Pesant, L., Ehret, G., Ledoux, M.J., Pham-huu, C., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde (2005) Appl. Catal. A: General, 288 (1-2), pp. 203-210 | |
dc.relation.references | Reyhani, A., Mortazavi, S.Z., Mirershadi, S., Moshfegh, A.Z., Parvin, P., Golikand, A.N., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions (2011) J. Phys. Chem. C, 115 (14), pp. 6994-7001 | |
dc.relation.references | Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes (2002) Appl. Phys. A, 74 (3), pp. 387-391 | |
dc.relation.references | Vander Wal, R.L., Ticich, T.M., Curtis, V.E., Substrate support interactions in metal-catalyzed carbon nanofiber growth (2001) Carbon, 39 (15), pp. 2277-2289 | |
dc.relation.references | Barcaro, G., Zhu, B., Hou, M., Fortunelli, A., Carbon clusters, surface growth, nickel surfaces, empirical potentials, density functional calculations (2012) Comput. Mater. Sci., 63, pp. 74-81 | |
dc.relation.references | Singh, N.B., Bhattacharya, B., Mondal, R., Nickel cluster functionalised carbon nanotube for CO molecule detection: a theoretical study (2016) Mol. Phys., 114 (5), pp. 671-680 | |
dc.relation.references | Xu, H., Chu, W., Sun, W., Liu, Z., DFT studies of Ni cluster on graphene surface: effect of CO2 activation (2016) RSC Adv., 6, pp. 96545-96553 | |
dc.relation.references | Thu, T., Nguyen, H., Le, V.K., Minh, C.L., Nguyen, N.H., A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube (2017) Comput. Theor. Chem., 1100, pp. 46-51 | |
dc.relation.references | Banhart, F., Charlier, J., Ajayan, P.M., Dynamic behavior of nickel atoms in graphitic networks (2000) Phys. Rev. Lett., 84 (4), pp. 686-689 | |
dc.relation.references | Gallego, J., Barrault, J., Batiot-dupeyrat, C., Mondragon, F., Intershell spacing changes in MWCNT induced by metal CNT interactions (2013) Micron, 44, pp. 463-467 | |
dc.relation.references | Dahal, A., Batzill, M., Graphene nickel interfaces: a review (2014) Nanoscale, 6 (5), pp. 2548-2562 | |
dc.relation.references | Kuzubov, A.A., Kovaleva, E.A., Tomilin, F.N., Mikhaleva, N.S., Kuklin, A.V., On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates (2015) J. Magn. Magn. Mater., 396, pp. 102-105 | |
dc.relation.references | Cha, J.J., Weyland, M., Briere, J.-F., Daykov, I.P., Three-dimensional imaging of carbon nanotubes deformed by metal islands (2007) Nano Lett., 7 (12), pp. 3770-3773 | |
dc.relation.references | Nemec, N., Tománek, D., Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: an ab initio study (2006) Phys. Rev. Lett., 96 (76802), pp. 1-4 | |
dc.relation.references | Sung, C.-M., Tai, M.-F., Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure (1997) Int. J. Refractory Met. Hard Mater., 15 (4), pp. 237-256 | |
dc.relation.references | Menon, M., Andriotis, A.N., Froudakis, G.E., Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls (2000) Chem. Phys. Lett., 320 (5-6), pp. 425-434 | |
dc.relation.references | Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Emery, V., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110 (42), pp. 21014-21020 | |
dc.relation.references | Durgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys. Rev. B, 67 201401, pp. 1-4 | |
dc.relation.references | Vitale, V., Curioni, A., Andreoni, W., Metal-carbon nanotube contacts: the link between schottky barrier and chemical bonding (2008) J. Am. Chem. Soc., 130 (18), pp. 5848-5849 | |
dc.relation.references | Fuentes-cabrera, M., Baskes, M.I., Melechko, A.V., Simpson, M.L., Bridge structure for the graphene/Ni(111) system: a first principles study (2008) Phys. Rev. B, 77 (35405), pp. 1-5 | |
dc.relation.references | Sun, X., Entani, S., Yamauchi, Y., Pratt, A., Kurahashi, M., Spin polarization study of graphene on the Ni(111) surface by density functional theory calculations with a semiempirical long-range dispersion correction (2014) J. Appl. Phys., 114 143713, pp. 1-7 | |
dc.relation.references | Soler, M., Artacho, E., Gale, J.D., Garc, A., Junquera, J., Ordej, P., Daniel, S., The SIESTA method for ab initio order-N materials (2002) J. Phys.: Condensed Matter, 14, pp. 2745-2779 | |
dc.relation.references | Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 170201, pp. 1-4 | |
dc.relation.references | Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals (2010) J. Phys.: Condensed Matter, 22 (22201), pp. 1-5 | |
dc.relation.references | Carrasco, J., Liu, W., Michaelides, A., Tkatchenko, A., Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces (2014) J. Chem. Phys., 140 (84704), pp. 1-10 | |
dc.relation.references | Mittendorfer, F., Garhofer, A., Redinger, J., Klime , J., Harl, J., Kresse, G., Graphene on Ni(111): strong interaction and weak adsorption (2011) Phys. Rev. B, 84 201401, pp. 1-4 | |
dc.relation.references | Rivero, P., García-suárez, V.M., Pereñiguez, D., Utt, K., Yang, Y., Bellaiche, L., Park, K., Barraza-lopez, S., Systematic pseudopotentials from reference eigenvalue sets for DFT calculations (2015) Comput. Mater. Sci., 98, pp. 372-389 | |
dc.relation.references | Qin, L.-C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., Iijima, S., The smallest carbon nanotube (2000) Nature, 408, p. 50 | |
dc.relation.references | Taylor, P., Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys., 19 (4), pp. 553-566 | |
dc.relation.references | Rance, G.A., Marsh, D.H., Bourne, S.J., Reade, T.J., Khlobystov, A.N., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures (2010) ACS Nano, 4 (8), pp. 4920-4928 | |
dc.relation.references | Patra, A., Bates, J.E., Sun, J., Perdew, J.P., Properties of real metallic surfaces: effects of density functional semilocality and van der waals nonlocality (2017) Proc. Natl. Acad. Sci., 114 (44), pp. E9188-E9196 | |
dc.relation.references | Zhang, W.-B., Chen, C., Tang, P.-Y., Zhang, W.-B., Chen, C., Tang, P.-Y., First-principles study for stability and binding mechanism of graphene/Ni(111) interface: role of vdW interaction (2014) J. Chem. Phys., 141 (44708), pp. 1-9 | |
dc.relation.references | Christian, M.S., Otero-de-la roza, E.R. Johnson, A., Johnson, E.R., Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model (2017) Carbon, 118, pp. 184-191 | |
dc.relation.references | Gebhardt, J., Vi, F., Andreas, G., Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces (2012) Phys. Rev. B, 86 195431, pp. 1-15 | |
dc.relation.references | Cusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M.C., Fortunelli, A., Iannaccone, G., Electrical properties of graphene- metal contacts (2017) Scientific Rep., 7, pp. 1-11 | |
dc.relation.references | Zhang, C., Lee, B.-J., Li, H., Samdani, J., Kang, T.-H., Yu, J.-S., Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications (2018) Commun. Chem., 1, pp. 1-10 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]