Mostrar el registro sencillo del ítem

dc.creatorRivera-Madrid I.E.
dc.creatorRincón-Fulla M.
dc.creatorOsorio-Correa A.M.
dc.creatorChica-Osorio L.M.
dc.creatorBustamante-Rúa M.O.
dc.creatorMenéndez-Aguado J.M.
dc.date2019
dc.date.accessioned2020-04-29T14:54:00Z
dc.date.available2020-04-29T14:54:00Z
dc.identifier.issn127353
dc.identifier.urihttp://hdl.handle.net/11407/5787
dc.descriptionThe results of characterizing the alumina ball size distribution in two mills of a crushing and grinding plant are shown. The mills were unloaded and the ball charge was screened in order to establish the ball size distribution. For both mills, the balls retained during the unloading were compared to the balls retained at the beginning of the process, and additionally, they were compared to the results obtained by the Swebrec adjusted distribution model. In both cases, the experimental data have had a good fit with this model. This practice is important in order to establish the best ball charge at the beginning of the operation and the ball recharge in the steady state. © The author; licensee Universidad Nacional de Colombia.
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074398270&doi=10.15446%2fdyna.v86n209.73970&partnerID=40&md5=55a789e74595a3ee1328edb00f7f0696
dc.sourceDYNA (Colombia)
dc.subjectBall size distribution
dc.subjectGrinding
dc.subjectSize distribution model
dc.titleComparison of alumina ball size distribution in two white cement grinding units using swebrec function [Comparación de la distribución de tamaño de bolas de alúmina en dos unidades de molienda de cemento blanco utilizando la función swebrec]
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.15446/dyna.v86n209.73970
dc.relation.citationvolume86
dc.relation.citationissue209
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRivera-Madrid, I.E., Institución Universitaria Pascual Bravo, Medellín, Colombia; Rincón-Fulla, M., Institución Universitaria Pascual Bravo, Medellín, Colombia, Escuela de física, Universidad Nacional de Colombia, sede Medellín, Colombia; Osorio-Correa, A.M., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Chica-Osorio, L.M., Grupo GICI, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia; Bustamante-Rúa, M.O., CIMEX, Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, Colombia; Menéndez-Aguado, J.M., Escuela Politécnica de Mieres, Universidad de Oviedo, Oviedo, Spain
dc.relation.referencesZhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X., Influence of ball size distribution on grinding effect in horizontal planetary ball mill (2014) Advanced Powder Technology, 25 (3), pp. 983-990
dc.relation.referencesRazavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technology, 284, pp. 149-158
dc.relation.referencesKolacz, J., Measurement system of the mill charge in grinding ball mill circuits (1997) Minerals Engineering, 10 (12), pp. 1329-1338
dc.relation.referencesMenacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills II. General solution (1987) Powder Technology, 52 (3), pp. 267-277
dc.relation.referencesMenacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills I. Zero order wear rate (1986) Powder Technology, 47 (1), pp. 87-96
dc.relation.referencesConcha, F., Magne, L., Austin, L.G., Optimization of the makeup ball charge in a grinding mill (1992) International Journal of Minerals Processing, 34 (3), pp. 231-241
dc.relation.referencesHerbst, J.A., Fuerstenau, D.W., Scale-up procedures for continuous grinding mill design using population balance models (1981) International Journal of Minerals Processing, 7 (1), pp. 1-31
dc.relation.referencesChimwani, N., Mulenga, F.K., Hildebrandt, D., Ball size distribution for the maximum production of a narrowly-sized mill product (2015) Powder Technology, 284, pp. 12-18
dc.relation.referencesAustin, L.G., Klimpe, R.R., Luckie, P., (1984) Process Engineering of Size Reduction: Ball Milling, , New York: SME/AIME
dc.relation.referencesKatubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate (2009) Minerals Engineering, 22 (15), pp. 1283-1288
dc.relation.referencesBwalya, M., Moys, M.H., Finnie, G.J., Mulenga, F.K., Exploring ball size distribution in coal grinding mills (2014) Powder Technology, 257, pp. 68-73
dc.relation.referencesYildirim, K., Cho, H., Austin, L.G., The modeling of dry grinding of quartz in tumbling media mills (1999) Powder Technology, 105 (1-3), pp. 210-221
dc.relation.referencesRivera, I.E., Álvarez-Rodríguez, B., Bustamante, O., Restrepo-Baena, O.J., Menéndez-Aguado, J.M., Ceramic ball wear prediction in tumbling mills as a grinding media selection tool (2014) Powder Technology, 268, pp. 373-376
dc.relation.referencesFruhstorfer, J., Schafföner, S., Aneziris, C.G., Dry ball mixing and deagglomeration of alumina and zirconia composite fine powders using a bimodal ball size distribution (2014) Ceramics International, 40, pp. 15293-15302. , (9 Part B)
dc.relation.referencesShin, H., Lee, S., Jung, H.S., Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill (2013) Ceramics International, 39 (8), pp. 8963-8968
dc.relation.referencesDjamarani, K.M., Clark, I.M., Characterization of particle size based on fine and coarse fractions (1997) Powder Technology, 93 (2), pp. 101-108
dc.relation.referencesRosin, P., Rammler, E., The laws governing the fineness of powdered coal (1933) J. Inst. Fuel, 7, pp. 29-36
dc.relation.referencesGates, A.O., Kick vs. Rittinger: An experimental investigation in rock crushing performed at Purdue University (1915) Trans AIME, 52, pp. 875-909
dc.relation.referencesSchumann, J., Principles of comminution I: Size distribution and surface calculations (1940) Trans. AIME, Tech. Publ., 1189
dc.relation.referencesMacías-García, A., Cuerda-Correa, E.M., Díaz-Díez, M.A., Application of the Rosin-Rammler and Gates-Gaudin-Schumann models to the particle size distribution analysis of agglomerated cork (2004) Materials Characterization, 52 (2), pp. 159-164
dc.relation.referencesOuchterlony, F., The Swebrec function: Linking fragmentation by blasting and crushing (2005) Journal Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A., 114 (1), pp. 29-44
dc.relation.referencesOuchterlony, F., Olsson, M., Nyberg, U., Andersson, P., Gustavsson, L., Constructing the fragment size distribution of a bench blasting round, using the new Swebrec function (2006) International Symposium of Rock Fragmentation by Blasting
dc.relation.referencesOsorio, A.M., Menéndez-Aguado, J.M., Bustamante, O., Restrepo, G.M., Fine grinding size distribution analysis using the Swebrec function (2014) Powder Technology, 258, pp. 206-208
dc.relation.referencesMenéndez-Aguado, J.M., Peña-Carpio, E., Sierra, C., Particle size distribution fitting of surface detrital sediment using the Swebrec function (2015) Journal of Soils and Sediments, 15 (9), pp. 2004-2011
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem