Mostrar el registro sencillo del ítem

dc.creatorGaleano L.
dc.creatorValencia S.
dc.creatorMarín J.M.
dc.creatorRestrepo G.
dc.creatorNavío J.A.
dc.creatorHidalgo M.C.
dc.date2019
dc.date.accessioned2020-04-29T14:54:01Z
dc.date.available2020-04-29T14:54:01Z
dc.identifier.issn20531591
dc.identifier.urihttp://hdl.handle.net/11407/5788
dc.descriptionThe influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation. © 2019 IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072724520&doi=10.1088%2f2053-1591%2fab4316&partnerID=40&md5=6f51903ecb35fef936d727157f4958db
dc.sourceMaterials Research Express
dc.subjectgrinding process
dc.subjectphotodeposition
dc.subjectTiO2
dc.subjectCrystallinity
dc.subjectGrinding (machining)
dc.subjectLight absorption
dc.subjectPhenols
dc.subjectPhotocatalytic activity
dc.subjectPlatinum
dc.subjectSol-gels
dc.subjectTitanium dioxide
dc.subjectGrinding process
dc.subjectHigh photocatalytic activities
dc.subjectPhenol photodegradation
dc.subjectPhoto-deposition
dc.subjectSimulated solar radiations
dc.subjectSolvothermal method
dc.subjectTiO2
dc.subjectVisible light absorption
dc.subjectPhosphorus compounds
dc.titleComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.identifier.doi10.1088/2053-1591/ab4316
dc.relation.citationvolume6
dc.relation.citationissue10
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationGaleano, L., Grupo de Investigaciones y Mediciones Ambientales (GEMA), Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia; Valencia, S., Grupo de Investigación Integra, Tecnológico de Antioquia, Institución Universitaria, Calle 78B No 72A-220, Medellín, Colombia; Marín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia; Restrepo, G., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia; Navío, J.A., Instituto de Ciencia de Materiales de Sevilla (ICMS). Centro Mixto CSIC-Universidad de Sevilla, Américo Vespucio 49, Sevilla, 41092, Spain; Hidalgo, M.C., Instituto de Ciencia de Materiales de Sevilla (ICMS). Centro Mixto CSIC-Universidad de Sevilla, Américo Vespucio 49, Sevilla, 41092, Spain
dc.relation.referencesAbdullah, H., Khan, M.D., Ong, H., Yaakab, Z., Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview (2017) Journal of CO, 22, pp. 15-32
dc.relation.referencesAli, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Journal of Ceramic Processing Research, 15, pp. 290-293
dc.relation.referencesAysin, B., Ozturk, A., Park, J., Silver-loaded TiO2 powders prepared through mechanical ball milling (2013) Ceram. Int., 39, pp. 7119-7126
dc.relation.referencesCarneiro, J.O., Azevedo, S., Fernandez, F., Freitas, E., Pereira, M., Tavares, C.J., Lanceroz-Méndez, S., Teixeira, V., Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: The influence of process parameters on the structural, optical, magnetic, and photocatalytic properties (2014) Journal of Material Science, 49, pp. 7476-7488
dc.relation.referencesChen, H.W., Ku, Y., Kuo, Y.L., Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis (2007) Water Res., 41, pp. 2069-2078
dc.relation.referencesColeman, H.M., Chiang, K., Amal, R., Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water (2005) Chem. Eng. J., 113, pp. 65-72
dc.relation.referencesCybula, A., Priebe, J., Pohl, M., Sobczak, J., Schneider, M., Zielínska-Jurek, A., Brückner, A., Zaleska, A., The effect of calcination temperature on structure and photocatalyticproperties of Au/Pd nanoparticles supported on TiO2 (2014) Applied Catalysis B: Environmental, 152-153, pp. 202-211
dc.relation.referencesDilla, M., Pougin, A., Strunk, J., Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysis in the reduction of CO2 to CH4 (2017) Journal of Energy Chemistry, 26, pp. 277-283
dc.relation.referencesDozzi, M., Saccomanni, A., Selli, E., Cr(VI) photocatalytic reduction: Effects of simultaneous organic oxidation and of gold nanoparticles photodeposition on TiO2 (2012) Journal of Hazardous Materials, 211-212, pp. 188-195
dc.relation.referencesDu, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., Tachiya, M., Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size (2009) J. Phys. Chem. C, 113, pp. 6454-6462
dc.relation.referencesEstruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333
dc.relation.referencesFang, J., Cao, S., Wang, Z., Shahjamali, M., Loo, S., Barber, J., Xue, C., Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction (2012) Int. J. Hydrogen Energy, 37, pp. 17853-17861
dc.relation.referencesFernández-Rodríguez, C., Doña-Rodríguez, J., González-Díaz, O., Seck, I., Zerbani, D., Portillo, D., And Perez-Peña. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications (2012) Journal of Applied Catalysis B: Environmental, 125, pp. 383-389
dc.relation.referencesGaleano, L., Valencia, S., Restrepo, G., Marin, J.M., Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications (2019) Mater. Sci. Semicond. Process., 91, pp. 47-57
dc.relation.referencesGo?abiewska, A., Lisowski, W., Jarek, M., Nowaczyk, G., Zieli?ska-Jurek, A., Zaleska, A., Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles (2014) Appl. Surf. Sci., 317, pp. 1131-1142
dc.relation.referencesGone, R., Giri, P., Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling (2016) J. Alloys Compd., 676, pp. 591-600
dc.relation.referencesGrabowska, E., Marchelek, M., Klimczuk, T., Trykowski, G., Zaleska-Medynska, A., Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light (2016) J. Mol. Catal. A: Chem., 423, pp. 191-206
dc.relation.referencesGupta, B., Melvin, A., Matthews, T., Dash, S., Tyagi, A.K., TiO2 modification for photocatalytic hyderogen (H2) production. Renowable and Sustantable (2016) Energy, 58, pp. 1366-1375
dc.relation.referencesHernandez, M.J., Pulido, E., Garcia, D., Gonzalez, O., Navio, J.A., Doña, J.M., NO photooxidation with TiO2 photocatalysts modified with gold and platinum (2017) Appl. Catalysis B, 205, pp. 148-157
dc.relation.referencesHidalgo, M., Colón, G., Navío, J., Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol., A, 148, pp. 341-348
dc.relation.referencesHidalgo, M., Maicu, M., Navío, J., Colón, G., Photocatalytic properties of surface modified platinized TiO2: Effect of particle size and structural composition (2007) Catal. Today, 129, pp. 43-49
dc.relation.referencesHidalgo, M., Murcia, J., Navío, J., Colón, G., Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation (2011) Appl. Catal., A, 397, pp. 112-120
dc.relation.referencesHu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188
dc.relation.referencesHu, J., Wang, L., Zhang, P., Liang, C., Shao, G., Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production (2016) J. Power Sources, 328, pp. 28-36
dc.relation.referencesHufschmidt, D., Bahnemann, D., Testa, J., Emilio, C., Litter, M., Enhancement of the photocatalytic activity of various TiO2 materials by platinisation (2002) J. Photochem. Photobiol., A, 148, pp. 223-231
dc.relation.referencesIsmail, A., Bahnemann, D., Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase (2012) Chem. Eng. J., 203, pp. 174-181
dc.relation.referencesKang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photocatalyst with its grinding in solvent (2008) Applied Catalysis B: Environment, 84, pp. 570-576
dc.relation.referencesKang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol., A, 189, pp. 232-238
dc.relation.referencesKernazhitsky, L., Gavrilko, T., Shymanovska, V., Naumov, V., Laser-excited excitonic luminescence of nanocrystalline TiO2 powder (2014) Ukr. J. Phys., 59, pp. 246-253
dc.relation.referencesKhaki, M., Shafeeyah, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutant degradation-A review (2017) Journal of Environment Management, 198, pp. 78-94
dc.relation.referencesKhan, H., Berk, D., Selenium modified oxalate chelated titania: Characterization, mechanistic and photocatalytic studies (2015) Appl. Catal., A, 505, pp. 285-301
dc.relation.referencesKitsiou, V., Zachariadis, G., Lambropolou, D., Tsiplakides, D., Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalyst (2018) Journal of Environmental Chemical Engineering, 6, pp. 2409-2416
dc.relation.referencesKozlova, E., Lyubina, T., Nasalevich, M., Vorontsov, A., Miller, A., Kaichev, V., Parmon, V., Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Applied (2011) Catalysis Communications, 12, pp. 597-601
dc.relation.referencesLu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720
dc.relation.referencesMaicu, M., Hidalgo, M.C., Colón, G., Navío, J.A., Comparative study of the photodeposition of Pt, Au, Pd on pre-sulphate TiO2 for the photocatalytic decomposition of phenol (2011) J. Photochem. Photobiol., A, 217, pp. 275-283
dc.relation.referencesMarchal, C., Piquet, A., Behr, M., Cottineau, T., Papaefthimiou, V., Keller, V., Caps, V., Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content (2017) J. Catal., 352, pp. 22-34
dc.relation.referencesMelvin, A., Illath, K., Das, T., Raja, T., Bhattacharyya, S., Gopinath C. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces (2015) The Royal Society of Chemistry
dc.relation.referencesMiao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114
dc.relation.referencesMills, A., ÓRourke, C., Moore, K., Powder semiconductor photocatalysis in aquous solution: An overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol., A, 310, pp. 66-105
dc.relation.referencesMurcia, J., Ávila-Martinez, E., Rojas, H., Navio, J., Hidalgo, M., Study of the E. Coli elimination from urban wastewater over photocatalysis based on metallized TiO2 (2017) Appl. Catalysis B, 200, pp. 469-476
dc.relation.referencesMurcia, J., Navío, J., Hidalgo, M., Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation (2012) Appl. Catalysis B, 126, pp. 76-85
dc.relation.referencesMurcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Correlation study between photo-degradation and Surface adsorption properties of phenol and methyl orange on TiO2 vs platinum supported TiO2. Applied (2014) Catalysis B: Environmental, 150, 151, pp. 107-115
dc.relation.referencesMurcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition (2015) Appl. Catalysis B, 179, pp. 305-312
dc.relation.referencesMurcia, J., Hidalgo, M., Navio, J., Vaiano, V., Sannino, D., Ciabelli, P., Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts (2013) Catal. Today, 209, pp. 164-169
dc.relation.referencesNa-Phattalung, S., Smith, M.F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S.B., Limpijumnong, S., First-principles study of native defects in anatase TiO2 (2006) Physical Rewiew B, 73, p. 125205
dc.relation.referencesOkazaki, K., Morikawa, Y., Tanaka, S., Tanaka, K., Kohyama, M., Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) (2005) J. Mater. Sci., 40, pp. 3075-3080
dc.relation.referencesOkuno, T., Kawamura, G., Muto, H., Matuda, A., Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light (2016) J. Solid State Chem., 235, pp. 132-138
dc.relation.referencesOrlov, A., Jefferson, D., MacLeod, N., Lambert, R., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-Chlorophenol in aqueous solution (2004) Catal. Lett., 92, pp. 41-47
dc.relation.referencesPalmas, S., Polcaro, A.M., Rodriguez Ruiz, J., Da Pozzo, A., Vacca, A., Mascia, M., Delogu, F., Ricci, P.C., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrogen Energy, 34, pp. 9662-9670
dc.relation.referencesParker, J.C., Siegel, R.W., Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 (1990) Appl. Phys. Lett., 57, pp. 943-945
dc.relation.referencesPhattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catalysis B, 200, pp. 1-9
dc.relation.referencesRen, H., Koshy, P., Chen, W.F., Qi, S., Sorrell, C., Photocatalytic materials and technologies for air purification (2017) J. Hazard. Mater., 325, pp. 340-366
dc.relation.referencesSaito, F., Baron, M., Dodds J.ed Waseda Y.and Muramatsu, A., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, 64, pp. 3-24. , Saito F, Baron M and Dodds J ed Y Waseda and A Muramatsu (Berlin, Heidelberg: Springer Series in Materials Science) pp 1-24 (www.springer.com/gp/book/9783540009580)
dc.relation.referencesShahini, P., Ashkarran, A., Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst (2018) Colloids and Surfaces A, 537, pp. 155-162
dc.relation.referencesShayegan, Z., Lee, C., Haghighat, F., TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review (2018) Chem. Eng. J., 334, pp. 2408-2439
dc.relation.referencesThommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.
dc.relation.referencesTian, B., Zhang, J., Tong, T., Chen, F., Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange (2008) Appl. Catalysis B, 79, pp. 394-401
dc.relation.referencesVaiano, V., Iervolino, G., Sannino, D., Murcia, J., Hidalgo, M.C., Ciambelli, P., Navio, J., Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts (2016) Applied Catalysis B: Environmental Catalysis B: Environmental, 188, pp. 134-146
dc.relation.referencesVaiano, V., Sacco, O., Iervolino, G., Sannino, D., Ciambelli, P., Liguori, R., Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied (2015) Catalysis B: Environmental, 176, 177, pp. 594-600
dc.relation.referencesValencia, S., Marín, J., Restrepo, G., Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment (2010) The Open Materials Science Journal, 4, pp. 9-14
dc.relation.referencesValencia, S., Marín, J., Restrepo, G., Frimmel, F.H., Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid (2013) Science of Total Environment, 442, pp. 207-214
dc.relation.referencesVittadini, A., Selloni, A., Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study (2002) The Journal of Chemistry Physics, 117, p. 353. , 361
dc.relation.referencesWang, F., Wong, R., Ho, J., Jiang, J., Amal, R., Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light Irradiation (2017) Applied Materials & Interfaces, 9, pp. 30575-30582
dc.relation.referencesWang, L., Fan, J., Cao, Z., Zheng, Y., Yao, Z., Shao, G., Hu, J., Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts (2014) Chemistry An Asian Journal, 9, pp. 1904-1912. , Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts
dc.relation.referencesWang, L., Zhang, X., Gao, H., Hu, J., Mao, J., Liang, C., 3D CuO network supported TiO2 nanosheets with applications for energy storage and water splitting (2016) Science of Advanced Materials, 8, pp. 1256-1262
dc.relation.referencesWang, L., Zhang, X., Zhang, P., Cao, Z., Hu, J., Photoelectric conversion performances of Mn doped TiO2 under > 420 nm visible light irradiation (2015) Journal of Saudi Chemical Society, 19, pp. 595-601
dc.relation.referencesWang, S., Zeng, B., Li, C., Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation (2018) Chin. J. Catal., 39, pp. 1219-1227
dc.relation.referencesWang, W., Tadé, M., Shao, Z., Nitrogen-doped simple and complex oxides for photocatalysis: A review (2018) Progressing Materials Science, 92, pp. 33-63. , 2018a
dc.relation.referencesWei, Z., Endo, M., Wang, K., Charbit, E., Markowska-Szczupak, A., Ahtani, B., Kowalska, E., Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants (2017) Chem. Eng. J., 318, pp. 121-134
dc.relation.referencesXiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes. Materials Letter (2017) Journal, 188, pp. 66-68
dc.relation.referencesYin, S., Zhang, Q., Saito, F., Saito T.ed Sopicka-Lizer, M., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , Yin S, Zhang Q, Saito F and Saito T ed M Sopicka-Lizer pp (www.sciencedirect.com/book/9781845695316/high-energy-ball-milling#book-description)
dc.relation.referencesZangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36
dc.relation.referencesZhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., Raman scattering study on anatase TiO2 nanocrystals (2000) J Ournal of Physics D: Applied Physics, 33 (8), pp. 912-916
dc.relation.referencesZhao, Q., Li, M., Chu, J., Jiang, T., Yin, H., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange (2009) Appl. Surf. Sci., 255, pp. 3773-3778
dc.relation.referencesZhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Science China Technological Sciences, 60, pp. 1447-1457
dc.relation.referencesZieli?ska-Jurek, A., Zaleska, A., Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase (2014) Catal. Today, 230, pp. 104-111
dc.relation.referencesZieli?ska-Jurek, A., Kowalska, E., Sobczak, J., Lisowski, W., Ohtani, B., Zaleska, A., Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light (2011) Appl. Catalysis B, 101, pp. 504-514
dc.relation.referencesZunic, V., Vukomanovic, M., Skapin, S., Suvorov, D., Kovac, J., Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach (2014) Ultrason. Sonochem., 21, pp. 367-375
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem