Mostrar el registro sencillo del ítem

dc.creatorAcelas N.Y.
dc.creatorFlórez E.
dc.date2019
dc.date.accessioned2020-04-29T14:54:03Z
dc.date.available2020-04-29T14:54:03Z
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/5795
dc.descriptionAdsorption of chromium (VI) on iron oxides is a potential removal method from industrial wastewater. Cr (VI) is a toxic specie for human health due to its easy mobility in the environment. Currently, US EPA drinking water standards establish a maximum Cr level of 100 ?g/L. Since the adsorption process occurs in the solid/liquid interface, pH is one of the main factors that affect this process and it is a very important parameter to study. Understanding the adsorption process and the molecular geometries of complexes, is essential to predict the environmental transport of Cr (VI) and to develop appropriate models for the remediation of Cr (VI). Therefore, in this work, we describe the adsorption of Cr (VI) onto Fe-hydr (oxides) through computational methods. A complete characterization of the adsorbed surface complexes was performed, and three different pH conditions were simulated (acidic, intermediate and basic). It was found that, the thermodynamic favourability of the different adsorbed complexes was directly related to the pH. Bidentate complex (BB) was the most thermodynamically favourable complex with an adsorption energy of -143.3 kJ/mol under acidic pH conditions. © Published under licence by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071067978&doi=10.1088%2f1742-6596%2f1247%2f1%2f012051&partnerID=40&md5=a02e925f250c431fde570bfcfef245b8
dc.sourceJournal of Physics: Conference Series
dc.subjectAdsorption
dc.subjectChemicals removal (water treatment)
dc.subjectComputation theory
dc.subjectDensity functional theory
dc.subjectEngineering research
dc.subjectEnvironmental Protection Agency
dc.subjectGibbs free energy
dc.subjectHydraulic servomechanisms
dc.subjectIron oxides
dc.subjectpH effects
dc.subjectPotable water
dc.subjectAdsorption energies
dc.subjectBidentate complexes
dc.subjectDensity functional theory studies
dc.subjectDrinking water standards
dc.subjectEnvironmental transport
dc.subjectIndustrial wastewaters
dc.subjectMolecular geometries
dc.subjectSolid/liquid interfaces
dc.subjectChromium compounds
dc.titleDensity functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1088/1742-6596/1247/1/012051
dc.relation.citationvolume1247
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAcelas, N.Y., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Flórez, E., Grupo de Materiales Con Impacto Matandmpac, Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia
dc.relation.referencesMamun, A.A., Morita, M., Matsuoka, M., Tokoro, C., Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution (2017) J. Hazard. Mater., 334, pp. 142-149
dc.relation.referencesSari, T.K., Takahashi, F., Jin, J., Zein, R., Munaf, E., Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes (2018) Anal. Sci., 34 (2), pp. 155-160
dc.relation.referencesAgency, U.S.E.P., Edition of the Drinking Water Standards and Health Advisories Tables (2018) United States Environmental Protection Agency: Washington, DC, USA
dc.relation.referencesJohnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on hematite (2014) Geochim. Cosmochim. Acta, 138, pp. 146-157
dc.relation.referencesZhou, L., Zhang, G., Wang, M., Wang, D., Cai, D., Wu, Z., Efficient removal of hexavalent chromium from water and soil using magnetic ceramsite coated by functionalized nano carbon spheres (2018) Chem. Eng. J., 334, pp. 400-409
dc.relation.referencesSharma, A., Thakur, K.K., Mehta, P., Pathania, D., Efficient adsorption of chlorpheniramine and hexavalent chromium (Cr(VI)) from water system using agronomic waste material (2018) Sustainable Chem. Pharm., 9, pp. 1-11
dc.relation.referencesAcelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of Nitrate and Bicarbonate on Fe-(Hydr)oxide (2017) Inor. Chem., 56 (9), pp. 5455-5464
dc.relation.referencesBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review (2018) Ecotoxicol. Environ. Saf., 148, pp. 702-712
dc.relation.referencesVilardi, G., Ochando-Pulido, J.M., Verdone, N., Stoller, M., Di Palma, L., On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery (2018) J. Cleaner Prod., 190, pp. 200-210
dc.relation.referencesJin, X., Liu, Y., Tan, J., Owens, G., Chen, Z., Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles (2018) J. Cleaner Prod., 176, pp. 929-936
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119, pp. 1353-1360
dc.relation.referencesAcelas, N.Y., Flórez, E., Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide (2017) Desalin. Water Treat, 60, pp. 88-105
dc.relation.referencesCastro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A., Heavy metal adsorption using biogenic iron compounds (2018) Hydrometallurgy, 179, pp. 44-51
dc.relation.referencesJohnston, C.P., Chrysochoou, M., Mechanisms of chromate adsorption on boehmite (2015) J. Hazard. Mater., 281, pp. 56-63
dc.relation.referencesVilela, P.B., Dalalibera, A., Duminelli, E.C., Becegato, V.A., Paulino, A.T., Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel (2018) Environ Sci Pollut Res Int, pp. 1-9
dc.relation.referencesDerdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., Magri, P., Removal of Cr(VI) from aqueous solutions by using activated carbon supported iron catalysts as efficient adsorbents (2018) World Journal of Engineering, 15, pp. 3-13
dc.relation.referencesJohnston, C.P., Chrysochoou, M., Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations (2012) Environ. Sci. Technol, 46 (11), pp. 5851-5858
dc.relation.referencesAdamescu, A., Hamilton, I.P., Al-Abadleh, H.A., Density Functional Theory Calculations on the Complexation of p-Arsanilic Acid with Hydrated Iron Oxide Clusters: Structures, Reaction Energies, and Transition States (2014) J. Phys. Chem. A, 118 (30), pp. 5667-5679
dc.relation.referencesPérez, J.F., Restrepo, A., (2008) ASCEC V-02, Annealing Simulado Con Energiá Cuántica, Property, Development and Implementation, , (Medellin, Colombia: Theoretical Chemical Physics Group, UdeA)
dc.relation.referencesFrisch, M.J., (2009) Gaussian 09 I.W. Revision D.01, , ed C Gaussian
dc.relation.referencesGuesmi, H., Tielens, F., Chromium Oxide Species Supported on Silica: A Representative Periodic DFT Model (2012) J. Phys.Chem C, 116 (1), pp. 994-1001
dc.relation.referencesVeselská, V., Fajgar, R., ?íhalová, S., Bolanz, R.M., Göttlicher, J., Steininger, R., Siddique, J.A., Komárek, M., Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation (2016) J. Hazard. Mater, 318, pp. 433-442
dc.relation.referencesYin, S., Ellis, D.E., DFT studies of Cr(VI) complex adsorption on hydroxylated hematite (1102) surfaces (2009) Surf. Sci., 603 (4), pp. 736-746
dc.relation.referencesFendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure (1997) Environ. Sci. Technol, 31 (2), pp. 315-320
dc.relation.referencesDzombak, D.A., Morel, F., Surface Complexation Modeling: Hydrous Ferric Oxide (1990) Ed. JW Sons, pp. 325-400
dc.relation.referencesXie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y., Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface (2015) J. Colloid Interface Sci 455, 455, pp. 55-62
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem