Show simple item record

dc.creatorUgarte J.P.
dc.creatorTobón C.
dc.descriptionAtrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientific computation has become an important tool in researching the underlying mechanisms of the AF. In this work, an equation of action potential propagation that implements fractional order derivatives is used to model the atrial dynamics. The fractional derivative order represents the structural heterogeneities of the atrial myocardium. Using such mathematical operator, the Courtemanche and Maleckar human atrial electrophysiological models, during healthy and AF conditions, are assessed. The results indicate that, through the fractional order variations, there are electrophysiological properties whose behavior do not depend on the cellular model or physiological conditions. On the other hand, there are properties whose behavior under distinct values of the fractional order, are specific to the cellular model and to the physiological condition and they can be characterized quantitatively and qualitatively. Therefore, the fractional atrial propagation model can be a useful tool for modeling a wide range of electrophysiological scenarios in both healthy and AF conditions. © 2019, Springer Nature Switzerland AG.
dc.sourceCommunications in Computer and Information Science
dc.subjectAtrial fibrillation
dc.subjectFractional calculus
dc.subjectHuman atrial electrophysiological models
dc.subjectMyocardium structural heterogeneity
dc.subjectMathematical operators
dc.subjectAction potential propagation
dc.subjectAtrial fibrillation
dc.subjectElectrophysiological models
dc.subjectElectrophysiological properties
dc.subjectFractional calculus
dc.subjectFractional order derivatives
dc.subjectPhysiological condition
dc.subjectStructural heterogeneity
dc.subjectPhysiological models
dc.titleHuman Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
dc.typeConference Paper
dc.publisher.programFacultad de Ciencias Básicas
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUgarte, J.P., GIMSC, Facultad de Ingenierías, Universidad de San Buenaventura, Medellín, Colombia; Tobón, C., MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.source.bibliographicCitationBode, F., Kilborn, M., Karasik, P., Franz, M.R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol., 37 (3), pp. 920-925
dc.source.bibliographicCitationBoutjdir, M., Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? L hétérogénéité des périodes réfractaires cellulaires de l oreillette humaine: Un facteur d arythmie? (1986) Pacing Clin. Electrophysiol., 9 (6), pp. 1095-1100
dc.source.bibliographicCitationBurstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51 (8), pp. 802-809
dc.source.bibliographicCitationCaballero, R., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differ-entially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55 (21), pp. 2346-2354
dc.source.bibliographicCitationCherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol., 254 (3), pp. 674-690
dc.source.bibliographicCitationClayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48. ,
dc.source.bibliographicCitationCorradi, D., Atrial fibrillation from the pathologist s perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 23 (2), pp. 71-84
dc.source.bibliographicCitationCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321. , Pt 2
dc.source.bibliographicCitationDobrev, D., Electrical remodeling in atrial fibrillation (2006) Herz, 31 (2), pp. 108-112
dc.source.bibliographicCitationHertervig, E., Li, Z., Kongstad, O., Holm, M., Olsson, S.B., Yuan, S., Global dispersion of right atrial repolarization in healthy pigs and patients (2003) Scand. Cardiovasc. J (SCJ), 37 (6), pp. 329-333. ,
dc.source.bibliographicCitationJalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol., 29 (1), pp. 20-27
dc.source.bibliographicCitationKamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J., 20 (12), pp. 888-895
dc.source.bibliographicCitationKirchhof, P., 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678
dc.source.bibliographicCitationKottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy (2013) Eur. Heart J., 34 (35), pp. 2731-2738
dc.source.bibliographicCitationLalani, G.G., Atrial conduction slows immediately before the onset of human atrial fibrillation a bi-atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59 (6), pp. 595-606
dc.source.bibliographicCitationLi, Z., Hertervig, E., Yuan, S., Yang, Y., Lin, Z., Olsson, S.B., Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation (2001) Europace, 3 (4), pp. 285-291
dc.source.bibliographicCitationMachado, J.A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal., 20 (2), pp. 307-336. ,
dc.source.bibliographicCitationMaleckar, M.M., Greenstein, J.L., Giles, W.R., Na, T., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am. J. Physiol. Heart Circ. Physiol., 297, pp. H1398-H1410
dc.source.bibliographicCitationMcDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., Macleod, R.S., Na, T., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) Plos ONE, 10 (2)
dc.source.bibliographicCitationNarayan, S.M., Kazi, D., Krummen, D.E., Wj, R., Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation a mechanism for the initiation of atrial fibrillation by premature beats (2008) J. Am. Coll. Cardiol., 52 (15), pp. 1222-1230
dc.source.bibliographicCitationNiederer, S.A., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark (1954) Philos. Trans. R. Soc. a Math. Phys. Eng. Sci, 369, pp. 4331-4351. , 2011)
dc.source.bibliographicCitationNygren, A., Leon, L.J., Giles, W.R., Simulaations of the human atrial action potential (2001) Philos. Transsactions R. Soc. A, 359 (1783), pp. 1111-1125
dc.source.bibliographicCitationOgawa, M., Kumagai, K., Gondo, N., Matsumoto, N., Suyama, K., Saku, K., Novel electrophysiologic parameter of dispersion of atrial repolarization: Comparison of different atrial pacing methods (2002) J. Cardiovasc. Electrophysiol., 13 (2), pp. 110-117
dc.source.bibliographicCitationTrayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Front. Physiol., 5, p. 435. ,
dc.source.bibliographicCitationUgarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), pp. 1-17
dc.source.bibliographicCitationVoigt, N., Enhanced sarcoplasmic reticulum Ca2 + leak and increased Na+-Ca2 + exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation (2012) Circulation, 125 (17), pp. 2059-2070
dc.source.bibliographicCitationWilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol., 3 (487)
dc.source.bibliographicCitationXu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80 (1), pp. 53-56
dc.source.bibliographicCitationYang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218
dc.source.bibliographicCitationYue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res., 89 (4), pp. 744-753
dc.source.bibliographicCitationZhang, H., Garratt, C., Zhu, J., Holden, A., Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans (2005) Cardiovasc. Res., 66 (3), pp. 493-502

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record