Show simple item record

dc.creatorVergara J.M.
dc.creatorFlórez E.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.date2020
dc.date.accessioned2020-04-29T14:54:08Z
dc.date.available2020-04-29T14:54:08Z
dc.identifier.issn20531591
dc.identifier.urihttp://hdl.handle.net/11407/5813
dc.descriptionWe investigate the electronic properties of blue-phosphorene nanotubes using density functional theory first-principle calculations, taking into account, in particular, the presence of atom vacancies in the structure. The study considers both zigzag and armchair achiral configurations and reports on the structure and the electron energy states of the nanostructure. Compared to pristine blue-phosphorene nanotubes, which exhibit values of the fundamental bandgap between one and two electron-volts. For atomic single vacancies, the incorporation of spin-polarization helps to identify the induction of localized mid-gap states in the blue phosphorene nanotubes. The difference of energy between the highest near-valence and lower near-conduction localized states is, approximately, of 0.5 eV. Also the increase of the single vacancies concentration leads to the formation of additional bands that change the energy gap of the system. © 2020 The Author(s). Published by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081734484&doi=10.1088%2f2053-1591%2fab66a6&partnerID=40&md5=f8025905d4276e85e0a0f3446d0effbb
dc.sourceMaterials Research Express
dc.subjectblue-phosphorene
dc.subjectDFT
dc.subjectnanotubes
dc.subjectDensity functional theory
dc.subjectEnergy gap
dc.subjectNanotubes
dc.subjectSpin polarization
dc.subjectblue-phosphorene
dc.subjectElectron volt
dc.subjectFirst principle calculations
dc.subjectGap state
dc.subjectLocalized state
dc.subjectSingle vacancies
dc.subjectElectronic properties
dc.titleEffects of single vacancy on electronic properties of blue-phosphorene nanotubes
dc.typeArticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/article
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1088/2053-1591/ab66a6
dc.citation.volume7
dc.citation.issue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationVergara, J.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Ctro. de Invest. en Ciencias-IICBA. Universidad Autonoma Del Estado de Morelos. Av. Universidad 1001, CP 62209, Morelos, Cuernavaca, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.source.bibliographicCitationPokropivny, V.V., (2001) Powder Metall. Met. Ceram., 40, pp. 582-594
dc.source.bibliographicCitationIvanovskii, A.L., (2002) Russ. Chem. Rev., 71 (3), pp. 175-194
dc.source.bibliographicCitationEndo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., (2006) Jap. J. Appl. Phys., 45, pp. 4883-4892
dc.source.bibliographicCitationGovindaraju, N., Singh, R., Synthesis and properties of boron nitride nanotubes (2014) Nanotube Superfiber Materials, pp. 243-265. , ed Schulz M.J., Shanov V.N.and Yin Z
dc.source.bibliographicCitationBardhan, N.M., (2017) J. Mater. Res., 32, pp. 107-127
dc.source.bibliographicCitationHe, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., (2018) ChemElectroChem, 5, pp. 2464-2474
dc.source.bibliographicCitationKianfar, E., (2019) Microchem. J., 145, pp. 966-978
dc.source.bibliographicCitationGoda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., (2019) Microchem. J., 147, pp. 1083-1096
dc.source.bibliographicCitationDvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., MacAk, J.M., (2019) Applied Materials Today, 14, pp. 1-20
dc.source.bibliographicCitationRahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G., (2019) C-Journal of Carbon Research, 5, pp. 1-31
dc.source.bibliographicCitationSeifert, G., Hernnández, E., (2000) Chem. Phys. Lett., 318, pp. 355-360
dc.source.bibliographicCitationCabria, I., Mintmire, J.W., (2004) Europhys. Lett., 65 (1), pp. 82-88
dc.source.bibliographicCitationGuo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., (2014) The Journal of Physical Chemistry, 118, pp. 14051-14059
dc.source.bibliographicCitationHu, T., Hashmi, A., Hong, J., (2015) Nanotechnology, 26 (41)
dc.source.bibliographicCitationYu, S., Zhu, H., Eshun, K., Arab, A., Badwan, A., Li, Q., (2015) J. Appl. Phys., 118, p. 164306
dc.source.bibliographicCitationAllec, S.I., Wong, B.M., (2016) J. Phys. Chem. Lett., 7, pp. 4340-4345
dc.source.bibliographicCitationLiao, X., Hao, F., Xiao, H., Chen, X., (2016) Nanotechnology, 27 (21), pp. 215701-215708
dc.source.bibliographicCitationFernández-Escamilla, H.N., Quijano-Briones, J.J., Tlahuice-Flores, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 12414-12418
dc.source.bibliographicCitationSorkin, V., Zhang, Y.W., (2016) Nanotechnology, 27 (39)
dc.source.bibliographicCitationAnsari, R., Shahnazari, A., Rouhi, S., (2017) Physica E, 88, pp. 272-278
dc.source.bibliographicCitationHao, J., Wang, Z., Peng, Y., Wang, Y., (2019) Scientific Reports, 9, pp. 3-10
dc.source.bibliographicCitationPan, D., Wang, T.C., Wang, C., Guo, W., Yao, Y., (2017) RSC Adv., 7, pp. 24647-24651
dc.source.bibliographicCitationLiu, P., Pei, Q.X., Huang, W., Zhang, Y.W., (2018) J. Mater. Sci., 53, pp. 8355-8363
dc.source.bibliographicCitationSorkin, V., Zhang, Y.W., (2018) Nanotechnology, 29 (23)
dc.source.bibliographicCitationDai, X., Zhang, L., Wang, Z., Li, J., Li, H., (2019) Comput. Mater. Sci., 156, pp. 292-300
dc.source.bibliographicCitationFernández-Escamilla, H.N., Guerrero-Sánchez, J., Martínez-Guerra, E., Takeuchi, N., (2019) J. Phys. Chem., 123, pp. 7217-7224
dc.source.bibliographicCitationAierken, Y., Leenaerts, O., Peeters, F.M., (2015) Phys. Rev., 92, pp. 104104-104110
dc.source.bibliographicCitationMontes, E., Schwingenschlögl, U., (2016) Phys. Rev., 94, pp. 1-5
dc.source.bibliographicCitationXiao, J., Long, M., Deng, C.S., He, J., Cui, L.L., Xu, H., (2016) J. Phys. Chem., 120, pp. 4638-4646
dc.source.bibliographicCitationMontes, E., Schwingenschlögl, U., (2017) J. Mater. Chem., 5, pp. 5365-5371
dc.source.bibliographicCitationJu, L., Dai, Y., Wei, W., Liang, Y., Huang, B., (2018) J. Mater. Chem., 6, pp. 21087-21097
dc.source.bibliographicCitationHao, J., Wang, Z., Jin, Q., (2019) Sci. Rep., 9, pp. 3-10
dc.source.bibliographicCitationZhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112
dc.source.bibliographicCitationHu, W., Yang, J., (2015) The Journal of Physical Chemistry, 119, pp. 20474-20480
dc.source.bibliographicCitationSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys. Condens. Matter, 14 (11), p. 2745
dc.source.bibliographicCitationPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
dc.source.bibliographicCitationBitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., (2006) Phys. Rev. Lett., 97
dc.source.bibliographicCitationOdom, T.W., Huang, J.L., Kim, P., Lieber, C.M., (1998) Nature, 391, pp. 62-64


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record