Mostrar el registro sencillo del ítem
Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering
dc.creator | Galindez Y. | |
dc.creator | Correa E. | |
dc.creator | Zuleta A.A. | |
dc.creator | Valencia-Escobar A. | |
dc.creator | Calderon D. | |
dc.creator | Toro L. | |
dc.creator | Chacón P. | |
dc.creator | Echeverría E F. | |
dc.date | 2019 | |
dc.date.accessioned | 2020-04-29T14:54:08Z | |
dc.date.available | 2020-04-29T14:54:08Z | |
dc.identifier.issn | 15989623 | |
dc.identifier.uri | http://hdl.handle.net/11407/5817 | |
dc.description | Abstract: Powders of commercially pure magnesium (c.p. Mg), AZ91 magnesium alloy and zinc were milled using a high-energy mill. The effect of high energy milling (HEM) on powders morphology, chemical composition, crystallite size and compaction of different powders mixtures were studied. After compaction, samples were thermally treated at 450 °C and both density and hardness were evaluated. It was found that as milling speed and time increases, the AZ91 alloy and c.p. Mg particles were deformed and fractured up to sizes below 10 ?m. X-ray diffraction patterns for both the c.p. Mg and the AZ91 powders revealed that the milling process induced changes in both the ?-Mg and the ?-Mg17Al12 phases. By increasing the milling speed, the crystallite size decreases by up to 70% for AZ91 powders and by 80% for magnesium powders. The relative densities of the compacted AZ samples were greater than 85% and this parameter increased for all samples after thermal treatment at 450 °C, obtaining densities higher than 88%. Hardness measurements disclosed values as high as 84.3 HR15T. Theoretical calculations of mechanical strength were obtained for all samples based on the hardness values measured, finding very encouraging results for the three Mg alloys. Graphic Abstract: [Figure not available: see fulltext.]. © 2019, The Korean Institute of Metals and Materials. | |
dc.language.iso | eng | |
dc.publisher | Korean Institute of Metals and Materials | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074647222&doi=10.1007%2fs12540-019-00490-1&partnerID=40&md5=d2e6c326ad8c420660fa60911f0c43db | |
dc.source | Metals and Materials International | |
dc.subject | AZ91 magnesium alloy | |
dc.subject | Crystallite size | |
dc.subject | High energy milling | |
dc.subject | Mg | |
dc.subject | Particle size | |
dc.subject | Thermal treatment | |
dc.title | Improved Mg–Al–Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Materiales | |
dc.identifier.doi | 10.1007/s12540-019-00490-1 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Galindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Correa, E., Grupo de Investigación Materiales con Impacto MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 65, Medellín, Colombia; Zuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia; Valencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia; Calderon, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Toro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Chacón, P., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Circular 1ª. Nº 70-01, Medellín, Colombia; Echeverría E, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | |
dc.relation.references | ?í ek, L., Greger, M., Pawlica, L., Dobrza?ski, L.A., Ta?ski, T., Study of selected properties of magnesium alloy AZ91 after heat treatment and forming (2004) J. Mater. Process. Technol., 157-158, pp. 466-471 | |
dc.relation.references | Lee, J.U., Kim, S.H., Jo, W.K., Hong, W.H., Kim, W., Bae, J.H., Park, S.H., Grain-refined AZ92 alloy with superior strength and ductility (2018) Metals Mater. Int., 24, pp. 730-737 | |
dc.relation.references | Dobrza?ski, L.A., Ta?ski, T., ?í ek, L., Brytan, Z., Structure and properties of magnesium cast alloys (2007) J. Mater. Process. Technol., 192-193, pp. 567-574 | |
dc.relation.references | Mondet, M., Barraud, E., Lemonnier, S., Guyon, J., Allain, N., Grosdidier, T., Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering (2016) Acta Mater., 119, pp. 55-67 | |
dc.relation.references | Xu, Y., Hu, L., Deng, T., Ye, L., Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy (2013) Mater. Sci. Eng. A, 559, pp. 528-533 | |
dc.relation.references | Jabbari-Taleghani, M.A., Torralba, J.M., Hot workability of nanocrystalline AZ91 magnesium alloy (2014) J. Alloys Compd., 595, pp. 1-7 | |
dc.relation.references | Hwang, S., Nishimura, C., McCormick, P.G., Mechanical milling of magnesium powder (2001) Mater. Sci. Eng. A, 318, pp. 22-33 | |
dc.relation.references | Zhang, Z., Yang, R., Chen, G., Zhao, Y., Shao, Y., Correlation between microstructure and tensile behavior in powder metallurgy ZK60 alloys (2012) Mater. Lett., 89, pp. 166-168 | |
dc.relation.references | Garcés, G., Domínguez, F., Pérez, P., Caruana, G., Adeva, P., Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92 (2006) J. Alloys Compd., 422, pp. 293-298 | |
dc.relation.references | Jabbari Taleghani, M.A., Torralba, J.M., Hot deformation behavior and workability characteristics of AZ91 magnesium alloy powder compacts a study using processing map (2013) Mater. Sci. Eng. A., 580, pp. 142-149 | |
dc.relation.references | Wen-bin, F., Wa, F., Hong-fei, S., Preparation of high-strength Mg 3Al Zn alloy with ultrafine-grained microstructure by powder metallurgy (2011) Powder Technol., 212, pp. 161-165 | |
dc.relation.references | Azimi, A., Shokuhfar, A., Zolriasatein, A., Nanostructured Al Zn Mg Cu Zr alloy prepared by mechanical alloying followed by hot pressing (2014) Mater. Sci. Eng. A, 595, pp. 124-130 | |
dc.relation.references | Zheng, B., Ertorer, O., Li, Y., Zhou, Y., Mathaudhu, S.N., Tsao, C.Y.A., Lavernia, E.J., High strength, nano-structured Mg Al Zn alloy (2011) Mater. Sci. Eng. A, 528, pp. 2180-2191 | |
dc.relation.references | Fang, W., Bin Fang, W., Sun, H.F., Bulk Mg 3Al Zn alloy with ultrafine grain size produced by powder metallurgy (2011) J. Alloys Compd., 509, pp. 4887-4890 | |
dc.relation.references | Miyahara, Y., Horita, Z., Langdon, T.G., Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP (2006) Mater. Sci. Eng. A, 420, pp. 240-244 | |
dc.relation.references | Jain, V., Mishra, R.S., Verma, R., Essadiqi, E., Superplasticity and microstructural stability in a Mg alloy processed by hot rolling and friction stir processing (2013) Scr. Mater., 68, pp. 447-450 | |
dc.relation.references | Pérez-Prado, M.T., Del Valle, J.A., Ruano, O.A., Grain refinement of Mg Al Zn alloys via accumulative roll bonding (2004) Scr. Mater., 51, pp. 1093-1097 | |
dc.relation.references | Suryanarayana, C., Mechanical alloying and milling (2001) Prog. Mater Sci., 46, pp. 1-184 | |
dc.relation.references | Chaubey, A.K., Scudino, S., Samadi Khoshkhoo, M., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., Eckert, J., High-strength ultrafine grain Mg 7.4%Al alloy synthesized by consolidation of mechanically alloyed powders (2014) J. Alloys Compd., 610, pp. 456-461 | |
dc.relation.references | Rashad, M., Pan, F., Asif, M., Room temperature mechanical properties of Mg Cu Al alloys synthesized using powder metallurgy method (2015) Mater. Sci. Eng. A, 644, pp. 129-136 | |
dc.relation.references | Ruiz Navas, E.M., Edil da Costa, C., Verlasco López, F., Torralba Castelló, J.M., Aleación mecánica: Método de obtención de polvos metálicos y de materiales compuestos (2000) Rev. Metal., 36, pp. 279-286 | |
dc.relation.references | Matsuzaki, K., Hatsukano, K., Hanada, K., Takahashi, M., Shimizu, T., Mechanical Properties and Formability of PM Mg-Al Based Alloys (2005) Magnesium, pp. 170-175. , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG | |
dc.relation.references | Zhou, Y.J., Jiang, A.Y., Liu, J.X., The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy (2013) Appl. Mech. Mater., 377, pp. 250-254 | |
dc.relation.references | Fogagnolo, J., Velasco, F., Robert, M., Torralba, J., Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders (2003) Mater. Sci. Eng. A, 342, pp. 131-143 | |
dc.relation.references | Razavi-Tousi, S.S., Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling (2015) Powder Technol., 284, pp. 149-158 | |
dc.relation.references | Chaubey, A., Scudino, S., Khoshkhoo, M., Prashanth, K., Mukhopadhyay, N., Mishra, B., Eckert, J., Synthesis and characterization of nanocrystalline Mg 74%Al powders produced by mechanical alloying (2013) Metals (Basel), 3, pp. 58-68 | |
dc.relation.references | Habibi, M.K., Tun, K.S., Gupta, M., An investigation into the effect of ball milling of reinforcement on the enhanced mechanical response of magnesium (2011) J. Compos. Mater., 45 (24), pp. 2483-2493 | |
dc.relation.references | Wagih, A., Effect of milling time on morphology and microstructure of Al Mg/Al2O3 nanocomposite powder produced by mechanical alloying (2014) Int. J. Adv. Eng. Sci., 4, pp. 1-7 | |
dc.relation.references | Pekguleryuz, M.O., Kainer, K.U., Kaya, A.A., (2013) Fundamental of Magnesium Alloy Metallurgy, , Woodhead Publishing, Sawston | |
dc.relation.references | Rasband, W., (1997) Imagej, , https://imagej.nih.gov/ij/, Accessed 20 Jan 2019 | |
dc.relation.references | (2015) ASTM E799-03: Standard Practice for Determining Data Criteria and Processing for Liquid Drop Size Analysis, 3, pp. 1-5. , ASTM International, West Conshohocken | |
dc.relation.references | Joshi, R.S., Srivastava, S., Singh, H., Microstructural analysis of nanostructured aluminum alloy strips created from machining based deformation process (2014) Procedia CIRP, 14, pp. 130-135 | |
dc.relation.references | (2018) ASTM E18-1: Standard Test Methods for Rockwell Hardness of Metallic Materials, pp. 1-38. , ASTM International, West Conshohocken | |
dc.relation.references | Liu, J., Lv, X., Li, J., Zeng, X., Xu, Z., Zhang, H., Jiang, L., Influence of parameters of high-energy ball milling on the synthesis and densification of magnesium aluminate spinel (2016) Sci. Sinter., 48, pp. 353-362 | |
dc.relation.references | Gupta, R.K., Murty, B.S., Birbilis, N., (2017) An overview of high-energy ball milled nanocrystalline aluminum alloys, , Springer, Berlin | |
dc.relation.references | (2015) ASTM B951-11: Standard Practice for Codification of Unalloyed Magnesium and Magnesium- Alloys, Cast and Wrought, pp. 1-7. , ASTM International, West Conshohocken | |
dc.relation.references | Yoo, M.H., Agnew, S.R., Morris, J.R., Ho, K.M., Non-basal slip systems in HCP metals and alloys: source mechanisms (2001) Mater. Sci. Eng. A, 319-321, pp. 87-92 | |
dc.relation.references | Agnew, S.R., Duygulu, Ö., Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B (2005) Int. J. Plast., 21, pp. 1161-1193 | |
dc.relation.references | Liu, Q., Song, J., Pan, F., She, J., Zhang, S., Peng, P., The edge crack, texture evolution, and mechanical properties of Mg 1Al 1Sn Mn alloy sheets prepared using on-line heating rolling (2018) Metals (Basel), 8, p. 860 | |
dc.relation.references | Catorceno, L.L.C., de Abreu, H.F.G., Padilha, A.F., Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet (2018) J. Magnes. Alloys, 6, pp. 121-133 | |
dc.relation.references | Feng, J., Sun, H., Li, X., Zhang, J., Fang, W., Fang, W., Microstructures and mechanical properties of the ultrafine-grained Mg 3Al Zn alloys fabricated by powder metallurgy (2016) Adv. Powder Technol., 27, pp. 550-556 | |
dc.relation.references | Pozuelo, M., Chang, Y.W., Yang, J.M., Enhanced compressive strength of an extruded nanostructured Mg 10Al alloy (2014) Mater. Sci. Eng. A, 594, pp. 203-211 | |
dc.relation.references | Xun, Y., Rodriguez, R., Lavernia, E.J., Mohamed, F.A., Processing and microstructural evolution of powder metallurgy Zn-22 Pct Al eutectoid alloy containing nanoscale dispersion particles (2005) Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 36, pp. 2849-2859 | |
dc.relation.references | Marotta, L., De Vasconcellos, R., Carvalho, Y.R., Falchete, R., Gustavo, L., De Vasconcellos, O., Lima, M., Cairo, A., Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration (2012) Biomed. Eng. Tech. Appl. Med. | |
dc.relation.references | Zheng, L., Nie, H., Liang, W., Wang, H., Wang, Y., Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys (2016) J. Magnes. Alloys, 4, pp. 115-122 | |
dc.relation.references | Zhang, Z., Yu, H., Chen, G., Yu, H., Xu, C., Correlation between microstructure and tensile properties in powder metallurgy AZ91 alloys (2011) Mater. Lett., 65, pp. 2686-2689 | |
dc.relation.references | Jabbari Taleghani, M.A., Torralba, J.M., The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing (2013) Mater. Lett., 98, pp. 182-185 | |
dc.relation.references | Lee, T., Yamasaki, M., Kawamura, Y., Go, J., Park, S.H., High-strength AZ91 alloy fabricated by rapidly solidified flaky powder metallurgy and hot extrusion (2019) Metals Mater. Int., 25, pp. 372-380 | |
dc.relation.references | Wang, Z., Yang, Y., Li, B., Zhang, Y., Zhang, Z., Effect of hot-deformation on microstructure and mechanical properties of AZ80 magnesium alloy (2013) Mater. Sci. Eng. A, 582, pp. 36-40 | |
dc.relation.references | Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V.K., An investigation on flowability and compressibility of AA 6061100-x-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying (2010) Powder Technol., 201, pp. 70-82 | |
dc.relation.references | Burke, P., Kipouros, G.J., Development of magnesium powder metallurgy AZ31 alloy using commercially available powders (2011) High Temp. Mater. Process., 30, pp. 51-61 | |
dc.relation.references | Anish, R., Pragash, M.S., Singh, G.R., Development and characterization of AZ31B Mg alloy using powder metallurgy technique followed by hot extrusion (2014) Adv. Mater. Res., 984-985, pp. 124-128 | |
dc.relation.references | Syarif, J., Sajuri, Z., Zulkoffli, Z., Fabrication of AZ61 magnesium alloy from a pre-alloyed powder using PM process (2008) Engineering Postgraduate Conference, pp. 1-13 | |
dc.relation.references | (2013) ASTM B94-13:Standard Specification for Magnesium-Alloy Die Castings, pp. 1-6. , ASTM International, West Conshohocken | |
dc.relation.references | Sekhar, A.P., Nandy, S., Kumar Ray, K., Das, D., Hardness yield strength relation of Al Mg Si alloys (2018) IOP Conf. Ser. Mater. Sci. Eng. | |
dc.relation.references | Tiryakio?lu, M., Robinson, J.S., Salazar-Guapuriche, M.A., Zhao, Y.Y., Eason, P.D., Hardness strength relationships in the aluminum alloy 7010 (2015) Mater. Sci. Eng. A, 631, pp. 196-200 | |
dc.relation.references | Tiryakio?lu, M., On the relationship between Vickers hardness and yield stress in Al Zn Mg Cu Alloys (2015) Mater. Sci. Eng. A, 633, pp. 17-19 | |
dc.relation.references | Caceres, C., Griffiths, J., Pakdel, A., Davidson, C., Microhardness mapping and the hardness yield strength relationship in high-pressure diecast magnesium alloy AZ91 (2005) Mater. Sci. Eng. A., 402, pp. 258-268 | |
dc.relation.references | Khodabakhshi, F., Haghshenas, M., Eskandari, H., Koohbor, B., Hardness strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing (2015) Mater. Sci. Eng. A, 636, pp. 331-339 | |
dc.relation.references | Wang, H.Y., Yu, Z.P., Zhang, L., Liu, C.G., Zha, M., Wang, C., Jiang, Q.C., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process (2015) Sci. Rep., 5, pp. 1-9 | |
dc.relation.references | Wang, X., Wu, M., Ma, W., Lu, Y., Yuan, S., Achieving superplasticity in AZ31 magnesium alloy processed by hot extrusion and rolling (2016) J. Mater. Eng. Perform., 25, pp. 64-67 | |
dc.relation.references | (2017) ASTM B91-17: Standard Specification for Magnesium-Alloy Forgings, pp. 1-5. , ASTM International, West Conshohocken | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]