Show simple item record

dc.creatorSalzman T.
dc.creatorTobón Vallejo D.
dc.creatorPolskaia N.
dc.creatorMichaud L.
dc.creatorSt-Amant G.
dc.creatorLajoie Y.
dc.creatorFraser S.
dc.date2021
dc.date.accessioned2021-02-05T14:57:32Z
dc.date.available2021-02-05T14:57:32Z
dc.identifier.issn21623279
dc.identifier.urihttp://hdl.handle.net/11407/5886
dc.descriptionIntroduction: Executive functions play a fundamental role in walking by integrating information from cognitive-motor pathways. Subtle changes in brain and behavior may help identify older adults who are more susceptible to executive function deficits with advancing age due to prefrontal cortex deterioration. This study aims to examine how older adults mitigate executive demands while walking during cognitively demanding tasks. Methods: Twenty healthy older adults (M = 71.8 years, SD = 6.4) performed simple reaction time (SRT), go/no-go (GNG), n-back (NBK), and double number sequence (DNS) cognitive tasks of increasing difficulty while walking (i.e., dual task). Functional near infra-red spectroscopy (fNIRS) was used to measure the hemodynamic response (i.e., oxy- [HbO2] and deoxyhemoglobin [HbR]) changes in the prefrontal cortex (PFC) during dual and single tasks (i.e., walking alone). In addition, performance was measured using gait speed (m/s), response time (s), and accuracy (% correct). Results: Using repeated measures ANOVAs, neural findings demonstrated a main effect of task such that ∆HbO2 (p =.047) and ∆HbR (p =.040) decreased between single and dual tasks. An interaction between task and cognitive difficulty (p =.014) revealed that gait speed decreased in the DNS between single and dual tasks. A main effect of task in response time indicated that the SRT response time was faster than all other difficulty levels (p <.001). Accuracy performance declined between single and dual tasks (p =.028) and across difficulty levels (p <.001) but was not significantly different between the NBK and DNS. Conclusion: Findings suggest that a healthy older adult sample might mitigate executive demands using an automatic locomotor control strategy such that shifting conscious attention away from walking during the dual tasks resulted in decreased ∆HbO2 and ∆HbR. However, decreased prefrontal activation was inefficient at maintaining response time and accuracy performance and may be differently affected by increasing cognitive demands. © 2021 The Authors. Brain and Behavior published by Wiley Periodicals LLC
dc.language.isoeng
dc.publisherJohn Wiley and Sons Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099016547&doi=10.1002%2fbrb3.2021&partnerID=40&md5=7f41cc0f78859abd960ebdb95849a1a3
dc.sourceBrain and Behavior
dc.subjectAgingspa
dc.subjectCognitive sciencespa
dc.subjectdual-task walkingspa
dc.subjectexecutive demandsspa
dc.subjectfNIRSspa
dc.subjectGaitspa
dc.subjectNear Infra-red spectroscopyspa
dc.subjectTask Performance and Analysisspa
dc.titleHemodynamic and behavioral changes in older adults during cognitively demanding dual tasks
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.identifier.doi10.1002/brb3.2021
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSalzman, T., Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
dc.affiliationTobón Vallejo, D., Faculty of Engineering, Universidad de Medellín, Medellín, Colombia
dc.affiliationPolskaia, N., School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
dc.affiliationMichaud, L., School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
dc.affiliationSt-Amant, G., School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
dc.affiliationLajoie, Y., School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
dc.affiliationFraser, S., Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
dc.relation.referencesAl-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., Cockburn, J., Cognitive motor interference while walking: A systematic review and meta-analysis (2011) Neuroscience & Biobehavioral Reviews, 35 (3), pp. 715-728. , https://doi.org/10.1016/j.neubiorev.2010.08.008
dc.relation.referencesAl-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., Dawes, H., Prefrontal cortex activation while walking under dual-task conditions in stroke: A multimodal imaging study (2016) Neurorehabilitation and Neural Repair, 30 (6), pp. 591-599. , https://doi.org/10.1177/1545968315613864
dc.relation.referencesBaddeley, A., (1986) Working memory, , Oxford University Press
dc.relation.referencesBeck, E., Intzandt, B., Almeida, Q.J., Can dual task walking improve in Parkinson’s disease after external focus of attention exercise? A single blind randomized controlled trial (2018) Neurorehabilitation and Neural Repair, 32 (1), pp. 18-33. , https://doi.org/10.1177/1545968317746782
dc.relation.referencesBernstein, N., (1967) The co-ordination and regulation of movements, , New York, Pergamon Press
dc.relation.referencesBertsch, K., Hagemann, D., Hermes, M., Walter, C., Khan, R., Naumann, E., Resting cerebral blood flow, attention, and aging (2009) Brain Research, 1267, pp. 77-88. , https://doi.org/10.1016/j.brainres.2009.02.053
dc.relation.referencesBeurskens, R., Bock, O., Age-related deficits of dual-task walking: A review (2012) Neural Plasticity, 2012, pp. 1-9. , https://doi.org/10.1155/2012/131608
dc.relation.referencesBeurskens, R., Helmich, I., Rein, R., Bock, O., Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study (2014) International Journal of Psychophysiology, 92 (3), pp. 122-128. , https://doi.org/10.1016/j.ijpsycho.2014.03.005
dc.relation.referencesBrustio, P., Magistro, D., Zecca, M., Rabaglietti, E., Liubicich, M., Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study (2017) PLoS One, 12 (7). , https://doi.org/10.1371/journal.pone.0181698
dc.relation.referencesCabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C., Lindenberger, U., Rajah, M.N., Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing (2018) Nature Reviews Neuroscience, 19 (11), pp. 701-710. , https://doi.org/10.1038/s41583-018-0068-2
dc.relation.referencesClark, D., Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00246
dc.relation.referencesDelbaere, K., Close, J., Mikolaizak, A., Sachdev, P., Brodaty, H., Lord, S., The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study (2010) Age and Ageing, 39 (2), pp. 210-216. , https://doi.org/10.1093/ageing/afp225
dc.relation.referencesDietrich, A., Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis (2003) Consciousness and Cognition, 12 (2), pp. 231-256. , https://doi.org/10.1016/S1053-8100(02)00046-6
dc.relation.referencesDietrich, A., Audiffren, M., The reticular-activating hypofrontality (RAH) model of acute exercise (2011) Neuroscience & Biobehavioral Reviews, 35 (6), pp. 1305-1325. , https://doi.org/10.1016/j.neubiorev.2011.02.001
dc.relation.referencesDupuy, O., Gauthier, C., Fraser, S., Desjardins-Crèpeau, L., Desjardins, M., Mekary, S., Lesage, F., Bherer, L., Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women (2015) Frontiers in Human Neuroscience, 9. , https://doi.org/10.3389/fnhum.2015.00066
dc.relation.referencesFraser, S., Dupuy, O., Pouliot, P., Lesage, F., Bherer, L., Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load (2016) Frontiers in Aging Neuroscience, 8. , https://doi.org/10.3389/fnagi.2016.00240
dc.relation.referencesGrady, C., Functional brain imaging and age-related changes in cognition (2000) Biological Psychology, 54 (1), pp. 259-281. , https://doi.org/10.1016/S0301-0511(00)00059-4
dc.relation.referencesGuralnik, J., Simonsick, E., Ferrucci, L., Glynn, R., Berkman, L., Blazer, D., Scherr, P., Wallace, R., A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission (1994) Journal of Gerontology, 49 (2), pp. M85-M94. , https://doi.org/10.1093/geronj/49.2.M85
dc.relation.referencesHarada, T., Miyai, I., Suzuki, M., Kubota, K., Gait capacity affects cortical activation patterns related to speed control in the elderly (2009) Experimental Brain Research, 193 (3), pp. 445-454. , https://doi.org/10.1007/s00221-008-1643-y
dc.relation.referencesHausdorff, J., Schweiger, A., Herman, T., Yogev-Seligmann, G., Giladi, N., Dual task decrements in gait among healthy older adults: Contributing factors (2008) The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63 (12), pp. 1335-1343
dc.relation.referencesHawkins, K., Fox, E., Daly, J., Rose, D., Christou, E.A., McGuirk, T., Otzel, D., Clark, D., Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications (2018) Human Movement Science, 59, pp. 46-55. , https://doi.org/10.1016/j.humov.2018.03.010
dc.relation.referencesHernandez, M., Holtzer, R., Chaparro, G., Jean, K., Balto, J., Sandroff, B., Izzetoglu, M., Motl, R., Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis (2016) Journal of the Neurological Sciences, 370, pp. 277-283. , https://doi.org/10.1016/j.jns.2016.10.002
dc.relation.referencesHerold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., Schega, L., Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks (2017) Neurophotonics, 4 (4). , https://doi.org/10.1117/1.NPh.4.4.041403
dc.relation.referencesHerwig, U., Satrapi, P., Schönfeldt-Lecuona, C., Using the international 10–20 eeg system for positioning of transcranial magnetic stimulation (2003) Brain Topography, 16 (2), pp. 95-99. , https://doi.org/10.1023/B:BRAT.0000006333.93597.9d
dc.relation.referencesHollman, J., McDade, E., Petersen, R., Normative spatiotemporal gait parameters in older adults (2011) Gait & Posture, 34 (1), pp. 111-118. , https://doi.org/10.1016/j.gaitpost.2011.03.024
dc.relation.referencesHoltzer, R., Mahoney, J., Izzetoglu, M., Izzetoglu, K., Onaral, B., Verghese, J., FNIRS study of walking and walking while talking in young and old individuals (2011) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A (8), pp. 879-887. , https://doi.org/10.1093/gerona/glr068
dc.relation.referencesHoltzer, R., Mahoney, J., Izzetoglu, M., Wang, C., England, S., Verghese, J., Online fronto-cortical control of simple and attention-demanding locomotion in humans (2015) NeuroImage, 112, pp. 152-159. , https://doi.org/10.1016/j.neuroimage.2015.03.002
dc.relation.referencesHoltzer, R., Verghese, J., Allali, G., Izzetoglu, M., Wang, C., Mahoney, J., Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis (2016) Brain Topography, 29 (2), pp. 334-343. , https://doi.org/10.1007/s10548-015-0465-z
dc.relation.referencesHsieh, S., Wu, M., Tang, C., Adaptive strategies for the elderly in inhibiting irrelevant and conflict no-go trials while performing the go/no-go task (2016) Frontiers in Aging Neuroscience, 7. , https://doi.org/10.3389/fnagi.2015.00243
dc.relation.referencesHuxhold, O., Li, S., Schmiedek, F., Lindenberger, U., Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention (2006) Brain Research Bulletin, 69 (3), pp. 294-305. , https://doi.org/10.1016/j.brainresbull.2006.01.002
dc.relation.referencesKahya, M., Moon, S., Ranchet, M., Vukas, R., Lyons, K.E., Pahwa, R., Akinwuntan, A., Devos, H., Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review (2019) Experimental Gerontology, 128. , https://doi.org/10.1016/j.exger.2019.110756
dc.relation.referencesKyrdalen, I., Thingstad, P., Sandvik, L., Ormstad, H., Associations between gait speed and well-known fall risk factors among community-dwelling older adults (2019) Physiotherapy Research International, 24 (1). , https://doi.org/10.1002/pri.1743
dc.relation.referencesLeff, D., Orihuela-Espina, F., Elwell, C., Athanasiou, T., Delpy, D., Darzi, A.W., Yang, G., Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies (2011) NeuroImage, 54 (4), pp. 2922-2936. , https://doi.org/10.1016/j.neuroimage.2010.10.058
dc.relation.referencesLu, C., Liu, Y., Yang, Y., Wu, Y., Wang, R., Maintaining gait performance by cortical activation during dual-task interference: A functional near-infrared spectroscopy study (2015) PLoS One, 10 (6). , https://doi.org/10.1371/journal.pone.0129390
dc.relation.referencesLundin-Olsson, L., Nyberg, L., Gustafson, Y., Himbert, D., Seknadji, P., Karila-Cohen, D., Juliard, J., Steg, P., “Stops walking when talking” as a predictor of falls in elderly people (1997) The Lancet, 349. , https://doi.org/10.1016/S0140-6736(97)24009-2
dc.relation.referencesMaidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M., Bloem, B.R., Giladi, N., Deutsch, J., Mirelman, A., The Role of the frontal lobe in complex walking among patients with parkinson’s disease and healthy older adults: An fNIRS study (2016) Neurorehabilitation and Neural Repair, 30 (10), pp. 963-971. , https://doi.org/10.1177/1545968316650426
dc.relation.referencesMarusic, U., Taube, W., Morrison, S.A., Biasutti, L., Grassi, B., De Pauw, K., Meeusen, R., Ruffieux, J., Aging effects on prefrontal cortex oxygenation in a posture-cognition dual-task: An fNIRS pilot study (2019) European Review of Aging and Physical Activity, 16 (1). , https://doi.org/10.1186/s11556-018-0209-7
dc.relation.referencesMirelman, A., Maidan, I., Bernad-Elazari, H., Shustack, S., Giladi, N., Hausdorff, J., Effects of aging on prefrontal brain activation during challenging walking conditions (2017) Brain and Cognition, 115, pp. 41-46. , https://doi.org/10.1016/j.bandc.2017.04.002
dc.relation.referencesMiyai, I., Tanabe, H., Sase, I., Eda, H., Oda, I., Konishi, I., Tsunazawa, Y., Kubota, K., Cortical mapping of gait in humans: A near-infrared spectroscopic topography study (2001) NeuroImage, 14 (5), pp. 1186-1192. , https://doi.org/10.1006/nimg.2001.0905
dc.relation.referencesNasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J., Chertkow, H., The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment (2005) Journal of the American Geriatrics Society, 53 (4), pp. 695-699. , https://doi.org/10.1111/j.1532-5415.2005.53221.x
dc.relation.referencesOldfield, R., The assessment and analysis of handedness: The Edinburgh inventory (1971) Neuropsychologia, 9 (1), pp. 97-113. , https://doi.org/10.1016/0028-3932(71)90067-4
dc.relation.referencesPashler, H., (1994) Dual-task Interference in Simple Tasks: Data and Theory., 116 (2). , https://doi.org/10.1037/0033-2909.116.2.220
dc.relation.referencesPatel, P., Lamar, M., Bhatt, T., Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking (2014) Neuroscience, 260, pp. 140-148. , https://doi.org/10.1016/j.neuroscience.2013.12.016
dc.relation.referencesPelicioni, P., Tijsma, M., Lord, S., Menant, J., Prefrontal cortical activation measured by fNIRS during walking: Effects of age, disease and secondary task (2019) PeerJ, 7. , https://doi.org/10.7717/peerj.6833
dc.relation.referencesPinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., Burgess, P., The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience (2018) Annals of the New York Academy of Sciences, 1464 (1), pp. 5-29. , https://doi.org/10.1111/nyas.13948
dc.relation.referencesPoldrack, R.A., The neural correlates of motor skill automaticity (2005) Journal of Neuroscience, 25 (22), pp. 5356-5364. , https://doi.org/10.1523/JNEUROSCI.3880-04.2005
dc.relation.referencesPotvin-Desrochers, A., Richer, N., Lajoie, Y., Cognitive tasks promote automatization of postural control in young and older adults (2017) Gait & Posture, 57, pp. 40-45. , https://doi.org/10.1016/j.gaitpost.2017.05.019
dc.relation.referencesQuaresima, V., Ferrari, M., A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? (2019) Photonics, 6 (3). , https://doi.org/10.3390/photonics6030087
dc.relation.referencesReuter-Lorenz, P., Park, D., How does it STAC up? Revisiting the scaffolding theory of aging and cognition (2014) Neuropsychology Review, 24 (3), pp. 355-370. , https://doi.org/10.1007/s11065-014-9270-9
dc.relation.referencesRicher, N., Saunders, D., Polskaia, N., Lajoie, Y., The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity (2017) Gait & Posture, 54, pp. 45-49. , https://doi.org/10.1016/j.gaitpost.2017.02.022
dc.relation.referencesRosso, A., Cenciarini, M., Sparto, P., Loughlin, P., Furman, J., Huppert, T., Neuroimaging of an attention demanding dual-task during dynamic postural control (2017) Gait & Posture, 57, pp. 193-198. , https://doi.org/10.1016/j.gaitpost.2017.06.013
dc.relation.referencesSchneider, W., Shiffrin, R., Controlled and automatic human information processing: I. detection, search, and attention (1977) Psychological Review, 84 (1)
dc.relation.referencesScholkmann, F., Wolf, M., General equation for the differential pathlength factor of the frontal human head depending on wavelength and age (2013) Journal of Biomedical Optics, 18 (10). , https://doi.org/10.1117/1.JBO.18.10.105004
dc.relation.referencesShumway-Cook, A., Woollacott, M., Kerns, K., Baldwin, M., The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls (1997) The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52A (4), pp. M232-M240. , https://doi.org/10.1093/gerona/52A.4.M232
dc.relation.referencesSmith, E., Cusack, T., Blake, C., The effect of a dual task on gait speed in community dwelling older adults: A systematic review and meta-analysis (2016) Gait & Posture, 44, pp. 250-258. , https://doi.org/10.1016/j.gaitpost.2015.12.017
dc.relation.referencesSorond, F., Kiely, D., Galica, A., Moscufo, N., Serrador, J., Iloputaife, I., Egorova, S., Lipsitz, L., Neurovascular coupling is impaired in slow walkers: The MOBILIZE Boston Study (2011) Annals of Neurology, 70 (2), pp. 213-220. , https://doi.org/10.1002/ana.22433
dc.relation.referencesSrygley, J., Mirelman, A., Herman, T., Giladi, N., Hausdorff, J., When does walking alter thinking? Age and task associated findings (2009) Brain Research, 1253, pp. 92-99. , https://doi.org/10.1016/j.brainres.2008.11.067
dc.relation.referencesSt-Amant, G., Rahman, T., Polskaia, N., Fraser, S., Lajoie, Y., Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing (2020) Human Movement Science, 70. , https://doi.org/10.1016/j.humov.2020.102587
dc.relation.referencesStrauss, P., Sherman, N., Spreen, O., (2006) A compendium of neuropsychological tests: Administration, norms, and commentary, , Oxford University Press
dc.relation.referencesVerghese, J., Wang, C., Ayers, E., Izzetoglu, M., Holtzer, R., Brain activation in high-functioning older adults and falls: Prospective cohort study (2017) Neurology, 88 (2), pp. 191-197. , https://doi.org/10.1212/WNL.0000000000003421
dc.relation.referencesVermeij, A., van Beek, A., Olde Rikkert, M., Claassen, J., Kessels, R., Effects of aging on cerebral oxygenation during working-memory performance: A functional near-infrared spectroscopy study (2012) PLoS One, 7 (9). , https://doi.org/10.1371/journal.pone.0046210
dc.relation.referencesWechsler, D., (1981) Wechsler adult intelligence scale-revised (WAIS-R), , Psychological Corporation
dc.relation.referencesWoollacott, M., Shumway-Cook, A., Attention and the control of posture and gait: A review of an emerging area of research (2002) Gait & Posture, 16 (1), pp. 1-14. , https://doi.org/10.1016/S0966-6362(01)00156-4
dc.relation.referencesWu, T., Kansaku, K., Hallett, M., How Self-Initiated Memorized Movements Become Automatic: A Functional MRI Study (2004) Journal of Neurophysiology, 91 (4), pp. 1690-1698. , https://doi.org/10.1152/jn.01052.2003
dc.relation.referencesWulf, G., Shea, C., Park, J., Attention and motor performance: Preferences for and advantages of an external focus (2001) Research Quarterly for Exercise and Sport, 72 (4), pp. 335-344. , https://doi.org/10.1080/02701367.2001.10608970
dc.relation.referencesYesavage, J., Sheikh, A., Geriatric depression scale (GDS) (1986) Clinical Gerontologist, 5 (1-2), pp. 165-173. , https://doi.org/10.1300/J018v05n01_09
dc.relation.referencesYogev, G., Hausdorff, J., Giladi, N., The role of executive function and attention in gait (2008) Movement Disorders: Official Journal of the Movement Disorder Society, 23 (3), pp. 329-472. , https://doi.org/10.1002/mds.21720
dc.relation.referencesYogev-Seligmann, G., Hausdorff, J., Giladi, N., Do we always prioritize balance when walking? Towards an integrated model of task prioritization (2012) Movement Disorders, 27 (6), pp. 765-770. , https://doi.org/10.1002/mds.24963
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record