Mostrar el registro sencillo del ítem

dc.creatorTobon V. D.P.
dc.creatorGarudadri H.
dc.creatorGodino J.G.
dc.creatorGodbole S.
dc.creatorPatrick K.
dc.creatorFalk T.H.
dc.date2021
dc.date.accessioned2021-02-05T14:57:33Z
dc.date.available2021-02-05T14:57:33Z
dc.identifier.issn1530437X
dc.identifier.urihttp://hdl.handle.net/11407/5887
dc.descriptionChronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectrooral signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation ( ρ =0.98 ) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices. © 2001-2012 IEEE.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097781983&doi=10.1109%2fJSEN.2020.3013996&partnerID=40&md5=49e78fed974c013cdf44bcac5de09ee0
dc.sourceIEEE Sensors Journal
dc.subjectAccelerometerspa
dc.subjectgait speedspa
dc.subjectmodulation spectrumspa
dc.subjecttelehealthspa
dc.subjectwearablesspa
dc.titleImproved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.identifier.doi10.1109/JSEN.2020.3013996
dc.subject.keywordAccelerometerseng
dc.subject.keywordClinical researcheng
dc.subject.keywordCost effectivenesseng
dc.subject.keywordCostseng
dc.subject.keywordData handlingeng
dc.subject.keywordKinematicseng
dc.subject.keywordModulationeng
dc.subject.keywordSpectrum analysiseng
dc.subject.keywordWearable technologyeng
dc.subject.keywordAccelerometer dataeng
dc.subject.keywordClinical practiceseng
dc.subject.keywordError variabilityeng
dc.subject.keywordHealth-care systemeng
dc.subject.keywordHome applicationeng
dc.subject.keywordModulation domainseng
dc.subject.keywordModulation spectral analysiseng
dc.subject.keywordTechnology-basedeng
dc.subject.keywordSpeedeng
dc.relation.citationvolume21
dc.relation.citationissue1
dc.relation.citationstartpage520
dc.relation.citationendpage528
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationTobon V., D.P., Telecommunications and Electronic Engineering Department, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationGarudadri, H., Qualcomm Institute, University of California San Diego (UCSD), San Diego, CA 92093, United States
dc.affiliationGodino, J.G., Family Medicine and Public Health, University of California San Diego (UCSD), San Diego, CA 92093, United States
dc.affiliationGodbole, S., Family Medicine and Public Health, University of California San Diego (UCSD), San Diego, CA 92093, United States
dc.affiliationPatrick, K., Family Medicine and Public Health, University of California San Diego (UCSD), San Diego, CA 92093, United States
dc.affiliationFalk, T.H., INRS-EMT, University of Quebec, Montreál, QC H2L 2C4, Canada
dc.relation.referencesColby, S.L., (2015) Projections of the Size and Composition of the Us Population: 2014 to 2060, , Current Population, United States Census Bureau, Suitland-Silver Hill, MD, USA, Tech. Rep. P25-1143
dc.relation.referencesBloom, D.E., Mitgang, E., Osher, B., (2016) Demography of Global Aging, , https://ssrn.com/abstract=2834214, Accessed: Jan. 5, 2020
dc.relation.referencesHung, W.W., Ross, J.S., Boockvar, K.S., Siu, A.L., Recent trends in chronic disease, impairment and disability among older adults in the United States (2011) Bmc Geriatrics, 11 (1), p. 47. , Dec
dc.relation.referencesCenters for Disease Control and Prevention and others The State of Aging and Health in America 2013, Centers for Disease Control Prevention, Atlanta, GA, USA, 2013
dc.relation.referencesReeder, B., Whitehouse, K., Sensor-based detection of gait speed in older adults: An integrative review (2015) Res. Gerontological Nursing, 8 (1), pp. 12-27. , Jan
dc.relation.referencesLord, S.E., Weatherall, M., Rochester, L., Community ambulation in older adults: Which internal characteristics are important? (2010) Arch. Phys. Med. Rehabil., 91 (3), pp. 378-383
dc.relation.referencesProhaska, T.R., Anderson, L.A., Hooker, S.P., Hughes, S.L., Belza, B., Mobility and aging: Transference to transportation (2011) J. Aging Res., 2011. , Aug
dc.relation.referencesWebber, S.C., Porter, M.M., Menec, V.H., Mobility in older adults: A comprehensive framework (2010) Gerontologist, 50 (4), pp. 443-450. , Aug
dc.relation.referencesPeel, N.M., Kuys, S.S., Klein, K., Gait speed as a measure in geriatric assessment in clinical settings: A systematic review (2013) J. Gerontol., Ser. A, 68 (1), pp. 39-46. , Jan
dc.relation.referencesStudenski, S., Bradypedia: Is gait speed ready for clinical use? (2009) J. Nutrition, Health Aging, 13 (10), pp. 878-880. , Dec
dc.relation.referencesFritz, S., Lusardi, M., Walking speed: The sixth vital sign (2009) J. Geriatric Phys. Therapy, 32 (2), pp. 2-5
dc.relation.referencesKan Van, G.Abellan, Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an international academy on nutrition and aging (IANA) task force (2009) J. Nutrition, Health Aging, 13 (10), pp. 881-889. , Dec
dc.relation.referencesCesari, M., Prognostic value of usual gait speed in wellfunctioning older people, Results from the health, aging and body composition study (2005) J. Amer. Geriatrics Soc., 53 (10), pp. 1675-1680
dc.relation.referencesStudenski, S., Gait speed and survival in older adults (2011) J. Amer. Med. Assoc., 305 (1), pp. 50-58
dc.relation.referencesTao, W., Liu, T., Zheng, R., Feng, H., Gait analysis using wearable sensors (2012) Sensors, 12 (2), pp. 2255-2283. , Feb
dc.relation.referencesRueterbories, J., Spaich, E.G., Larsen, B., Andersen, O.K., Methods for gait event detection and analysis in ambulatory systems (2010) Med. Eng. Phys., 32 (6), pp. 545-552. , Jul
dc.relation.referencesRampp, A., Barth, J., Schuelein, S., Gassmann, K.-G., Klucken, J., Eskofier, B.M., Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients (2015) IEEE Trans. Biomed. Eng., 62 (4), pp. 1089-1097. , Apr
dc.relation.referencesSabatini, A.M., Martelloni, C., Scapellato, S., Cavallo, F., Assessment of walking features from foot inertial sensing (2005) IEEE Trans. Biomed. Eng., 52 (3), pp. 486-494. , Mar
dc.relation.referencesZijlstra, W., Hof, A.L., Assessment of spatio-temporal gait parameters from trunk accelerations during human walking (2003) Gait Posture, 18 (2), pp. 1-10. , Oct
dc.relation.referencesVathsangam, H., Emken, A., Spruijt-Metz, D., Sukhatme, G.S., Toward free-living walking speed estimation using Gaussian processbased regression with on-body accelerometers and gyroscopes (2010) Proc. 4th Int. Icst Conf. Pervas. Comput. Technol. Healthcare, pp. 1-8
dc.relation.referencesHannink, J., Kautz, T., Pasluosta, C.F., Gasmann, K.-G., Klucken, J., Eskofier, B.M., Sensor-based gait parameter extraction with deep convolutional neural networks (2017) IEEE J. Biomed. Health Informat., 21 (1), pp. 85-93. , Jan
dc.relation.referencesAlotaibi, M., Mahmood, A., Improved gait recognition based on specialized deep convolutional neural network (2017) Comput. Vis. Image Understand., 164, pp. 103-110. , Nov
dc.relation.referencesGadaleta, M., Rossi, M., IDNet: Smartphone-based gait recognition with convolutional neural networks (2018) Pattern Recognit., 74, pp. 25-37. , Feb
dc.relation.referencesKhandelwal, S., Wickström, N., Identification of gait events using expert knowledge and continuous wavelet transform analysis (2014) Proc. 7th Int. Conf. Bio-Inspired Syst. Signal Process., Angers, France, pp. 197-204. , Mar
dc.relation.referencesWilliamson, J., Data sensing and analysis: Challenges for wearables (2015) Proc. 20th Asia South Pacific Design Autom. Conf., pp. 136-141. , Jan
dc.relation.referencesPatel, S., Park, H., Bonato, P., Chan, L., Rodgers, M., A review of wearable sensors and systems with application in rehabilitation (2012) J. NeuroEng. Rehabil., 9 (1), p. 21
dc.relation.referencesRolland, Y.M., Cesari, M., Miller, M.E., Penninx, B.W., Atkinson, H.H., Pahor, M., Reliability of the 400-m usual-pace walk test as an assessment of mobility limitation in older adults (2004) J. Amer. Geriatrics Soc., 52 (6), pp. 972-976. , Jun
dc.relation.referencesCassani, R., Falk, T.H., Spectrotemporal modeling of biomedical signals: Theoretical foundation and applications (2019) Encyclopedia of Biomedical Engineering, pp. 144-163. , R. Narayan, Ed. Oxford, U.K.: Elsevier
dc.relation.referencesFalk, T.H., Sejdic, E., Chau, T., Chan, W.-Y., (2010) Spectro-Temporal Analysis Auscultatory Sounds, , London, U.K.: INTECH Open Access
dc.relation.referencesFalk, T.H., Stadler, S., Kleijn, W.B., Chan, W.-Y., Noise suppression based on extending a speech-dominated modulation band (2007) Proc. Interspeech, pp. 970-973
dc.relation.referencesTobon, D.P.V., Falk, T.H., Maier, M., MS-QI: A modulation spectrum-based ECG quality index for telehealth applications (2016) IEEE Trans. Biomed. Eng., 63 (8), pp. 1613-1622. , Aug
dc.relation.referencesTobon, D.P., Falk, T.H., Adaptive spectro-temporal filtering for electrocardiogram signal enhancement (2018) IEEE J. Biomed. Health Informat., 22 (2), pp. 421-428. , Mar
dc.relation.referencesVestergaard, S., Patel, K.V., Bandinelli, S., Ferrucci, L., Guralnik, J.M., Characteristics of 400-meter walk test performance and subsequent mortality in older adults (2009) Rejuvenation Res., 12 (3), pp. 177-184. , Jun
dc.relation.referencesAtlas, L., Clark, P., Schimmel, S., (2010) Modulation Toolbox Version 2.1 for Matlab, , Seattle, WA, USA: Univ. Washington
dc.relation.referencesDel Din, S., Godfrey, A., Rochester, L., Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson's disease: Toward clinical and at home use (2016) IEEE J. Biomed. Health Informat., 20 (3), pp. 838-847. , May
dc.relation.referencesMoe-Nilssen, R., A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument (1998) Clin. Biomechan., 13 (4-5), pp. 320-327. , Jun
dc.relation.referencesMcCamley, J., Donati, M., Grimpampi, E., Mazzá, C., An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data (2012) Gait Posture, 36 (2), pp. 316-318. , Jun
dc.relation.referencesWinter, D.A., (2009) Biomechanics Motor Control Human Movement, , Hoboken, NJ, USA: Wiley
dc.relation.referencesKhandelwal, S., Wickström, N., Evaluation of the performance of accelerometer-based gait event detection algorithms in different realworld scenarios using the MAREA gait database (2017) Gait Posture, 51, pp. 84-90. , Jan
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem