dc.creator | Mozo-Vargas J.J.M. | |
dc.creator | Mora-Ramos M.E. | |
dc.creator | Correa J.D. | |
dc.creator | Duque C.A. | |
dc.date | 2021 | |
dc.date.accessioned | 2021-02-05T14:57:35Z | |
dc.date.available | 2021-02-05T14:57:35Z | |
dc.identifier.issn | 13698001 | |
dc.identifier.uri | http://hdl.handle.net/11407/5892 | |
dc.description | We use empirical sps | |
dc.description | d5 tight-binding calculations to determine the effects of compressive biaxial lattice strain, perpendicular to the [001] crystal direction, in zinc blende GaAs and InAs. Under that approach, we have been able to compute the behavior of quantities such as the average valence band energy, the energy band gap, the conduction band effective mass, and the spin-orbit split-off energy, as functions of the biaxial strain, within a range from 0 to −7%. Expressions governing these dependencies are reported for both materials. With such information at hand it is possible to calculate the variation of the coefficient of conduction band nonparabolicity due to the presence of strain. Also, the outcome for such quantities allows to evaluate the valence band offset in GaAs/InGaAs heterointerfaces as a consequence of the strain appearing from the difference between the lattice constants of the involved materials. Taking advantage of the above mentioned results, we have performed the calculation of confined conduction band states in step-like asymmetric quantum wells of the GaAs/Inx1Ga1-x1As/Inx2Ga1-x2As/GaAs prototype, using a k→⋅p→ formalism that solves the effective mass equation arising from a bi-cuadratic (nonparabolic) dispersion law. We report the calculation of the optical absorption coefficient related with intraband transitions that involve the ground and first excited energy levels. For that purpose, the study takes into account the variation of the layer widths and compositions. © 2020 Elsevier Ltd | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092700561&doi=10.1016%2fj.mssp.2020.105490&partnerID=40&md5=af0fe934a3f658b77cf1f2f7cc1bb57a | |
dc.source | Materials Science in Semiconductor Processing | |
dc.title | Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1016/j.mssp.2020.105490 | |
dc.subject.keyword | Conduction bands | eng |
dc.subject.keyword | Energy gap | eng |
dc.subject.keyword | Gallium arsenide | eng |
dc.subject.keyword | Indium arsenide | eng |
dc.subject.keyword | Lattice constants | eng |
dc.subject.keyword | Light absorption | eng |
dc.subject.keyword | Optical lattices | eng |
dc.subject.keyword | Quantum theory | eng |
dc.subject.keyword | Semiconducting gallium | eng |
dc.subject.keyword | Semiconducting indium gallium arsenide | eng |
dc.subject.keyword | Semiconductor quantum wells | eng |
dc.subject.keyword | Spin orbit coupling | eng |
dc.subject.keyword | Valence bands | eng |
dc.subject.keyword | Zinc sulfide | eng |
dc.subject.keyword | Asymmetric quantum wells | eng |
dc.subject.keyword | Band nonparabolicity | eng |
dc.subject.keyword | Conduction-band state | eng |
dc.subject.keyword | Effective-mass equation | eng |
dc.subject.keyword | Excited energy level | eng |
dc.subject.keyword | Intraband transitions | eng |
dc.subject.keyword | Optical absorption coefficients | eng |
dc.subject.keyword | Tight-binding calculations | eng |
dc.subject.keyword | III-V semiconductors | eng |
dc.relation.citationvolume | 123 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Mozo-Vargas, J.J.M., Centro de Investigación en Dispositivos Semiconductores-ICUAP, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, Mexico, Instituto de Física, Benemérita Universidad Autńoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, Mexico | |
dc.affiliation | Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia | |
dc.relation.references | Kane, E.O., Band structure of indium antimonide (1957) J. Phys. Chem. Sol., 1, p. 249 | |
dc.relation.references | Vrehen, Q.H.F., Interband magneto-optical absorption in gallium arsenide (1968) J. Phys. Chem. Sol., 29, p. 129 | |
dc.relation.references | Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., Nonparabolicity and anisotropy of the electron energy spectrum in GaAs (1985) Sov. Phys. JETP, 61, p. 1214 | |
dc.relation.references | Bastard, G., Hydrogenic impurity states in a quantum well: a simple model (1981) Phys. Rev. B, 24, p. 4714 | |
dc.relation.references | Bastard, G., Superlattice band structure in the envelope-function approximation (1981) Phys. Rev. B, 24, p. 5693 | |
dc.relation.references | Bastard, G., Theoretical investigations of superlattice band structure in the envelope-function approximation (1982) Phys. Rev. B, 25, p. 7584 | |
dc.relation.references | Bastard, G., Exciton binding energy in quantum wells (1982) Phys. Rev. B, 26, p. 1974 | |
dc.relation.references | Burt, M.G., The justification for applying the effective-mass approximation to microstructures (1922) J. Phys. Condens. Matter, 4, p. 6651 | |
dc.relation.references | Burt, M.G., Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries (1982) Phys. Rev. B, 50, p. 7518 | |
dc.relation.references | Chaudhuri, S., Bajaj, K.K., Effect of nonparabolicity on the energy levels of hydrogenic donors in GaAs-Ga1-xAlxAs quantum-well structures (1984) Phys. Rev. B, 29, p. 1803 | |
dc.relation.references | Malcher, F., Lommer, G., Rössler, U., Electron states in GaAs/Ga1-xAlxAs heterostructures: Nonparabolicity and spin-splitting (1986) Superlattice. Microst., 2, p. 267 | |
dc.relation.references | Nelson, D.F., Miller, R.C., Kleinman, D.A., Band nonparabolicity effects in semiconductor quantum wells (1987) Phys. Rev. B, 14, p. 7770 | |
dc.relation.references | Eckenberg, U., Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels (1989) Phys. Rev. B, 40, p. 7714 | |
dc.relation.references | Nag, B.R., Mukhopadhyay, S., Energy levels in quantum wells of nonparabolic semiconductors (1993) Phys. Stat. Sol., 175, p. 103 | |
dc.relation.references | Sirtori, C., Capasso, F., Faist, J., Scandolo, S., Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells (1994) Phys. Rev. B, 50, p. 8663 | |
dc.relation.references | Wetzel, C., Winkler, R., Drechsler, M., Meyer, B.K., Rössler, U., Scriba, J., Kotthaus, J.P., Scholz, F., Electron effective mass and nonparabolicity in Ga0.47In0.53As/InP quantum wells (1996) Phys. Rev. B, 53, p. 1038 | |
dc.relation.references | Li, Y., Voskoboynikov, O., Lee, C.P., Sze, S.M., Energy and coordinate dependent effective mass and confined electron states in quantum dots (2001) Sol. State. Commun., 120, p. 79 | |
dc.relation.references | Le, K.Q., Finite element analsysis of quantum states in layered quantum semiconductor structures with band nonparabolicity effect (2009) Microw. Opt. Technol. Lett., 51, p. 1 | |
dc.relation.references | Milanović, V., Radovanović, J., Ramović, S., Influence of nonparabolicity on boundary conditions in semiconductor quantum wells (2009) Phys. Lett., 373, p. 3071 | |
dc.relation.references | Panda, S., Panda, B.K., Effect of conduction band nonparabolicity on the optical properties in a single quantum well under hydrostatic pressure and electric field (2012) Pramana - J. Phys., 78, p. 827 | |
dc.relation.references | Kotera, N., Energy dependence of electron effective mass and effect of wave function confinement in a nanoscale In0.53Ga0.47As/In0.52Al0.48As quantum well (2013) J. Appl. Phys., 113, p. 234314 | |
dc.relation.references | Biswas, S., Islam, M.S., Mahbub, I., Adnan, F., Numerical Investigation of the Effects of conduction band Nonparabolicity on the conduction sub-band dispersion Relationships in a Al0.88In0.12N/Ga0.9 (2013) Lecture Notes on Photonics and Optoelectronics, 1, p. 1 | |
dc.relation.references | Biswas, S., Mahbub, I., Islam, M.S., 0.28 0.72 (2013) Conduction band-valence Band Coupling Effects on the Band Structure of In Ga N/GaN Quantum Well, 2013 Spanish Conference on Electron Devices (CDE), 211. , IEEE | |
dc.relation.references | Voković, N., Milanović, V., Radovanović, J., Influence of nonparabolicity on electronic structure of quantum cascade laser (2014) Phys. Lett., 378, p. 2222 | |
dc.relation.references | Bardeen, J., Shockley, W., Deformation potentials and mobilities in non-polar crystals (1950) Phys. Rev., 80, pp. 72-80 | |
dc.relation.references | Bir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (1974), Wiley New York | |
dc.relation.references | Singh, J., Strain induced band structure modifications in semiconductor heterostructures and consequences for electronic and optical devices (1991) Condensed Systems of Low Dimensionality. NATO ASI Series (Series B: Physics), 253. , J.L. Beeby P.K. Bhattacharya P.C. Gravelle F. Koch D.J. Lockwood Springer Boston, MA | |
dc.relation.references | Lamberti, C., The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films (2004) Surf. Sci. Reports, 53, pp. 1-197 | |
dc.relation.references | Sun, Y., Thompson, S.E., Nishida, T., Strain Effect in Semiconductors: Theory and Device Applications (2010), Springer New York | |
dc.relation.references | Van de Walle, C.G., Band lineups and deformation potentials in the model-solid theory (1989) Phys. Rev. B, 39, p. 1871 | |
dc.relation.references | Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F., Empirical spds | |
dc.relation.references | tight-binding calculation for cubic semiconductors: general method and material parameters (1998) Phys. Rev. B, 57, p. 6493 | |
dc.relation.references | Jancu, J.-M., Voisin, P., Tetragonal and trigonal deformations in zinc-blende semiconductors: a tight-binding point of view (2007) Phys. Rev. B, 76, p. 115202 | |
dc.relation.references | Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F., Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory (2002) Phys. Rev. B, 66, p. 125207 | |
dc.relation.references | Niquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X., Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys (2009) Phys. Rev. B, 79, p. 245201 | |
dc.relation.references | Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G., Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110]uniaxial strain applied to a silicon parametrization (2010) Phys. Rev. B, 81, p. 125202 | |
dc.relation.references | Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G., Transferable tight-binding model for strained group IV and III-V materials and heterostructures (2016) Phys. Rev. B, 94 | |
dc.relation.references | Sawamura, A., Otsuka, J., Kato, T., Kotani, T., Souma, S., Nearest-neighbor sp3d5s | |
dc.relation.references | tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices (2018) Opt. Mat. Express, 8, p. 1569 | |
dc.relation.references | Mi, Z., Bianucci, P., When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: emerging devices and applications (2012) Curr. Opin. Solid State Mater. Sci., 16, p. 52 | |
dc.relation.references | Ivanov, S.V., Chernov, M.Y., Solov'ev, V.A., Brunkov, P.N., Firsov, D.D., Komkov, O.S., Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters (2019) Prog. Cryst. Growth Charact. Mater., 65, p. 20 | |
dc.relation.references | Yachmenev, A.E., Pushkarev, S.S., Reznik, R.R., Khabibullin, R.A., Ponomarev, D.S., Arsenides-and related III-V materials-based multilayered structures for terahertz applications: various designs and growth technology (2020) Prog. Cryst. Growth Charact. Mater., 2020, p. 100485 | |
dc.relation.references | Chen, X., On the role of local-field effect on optical intersubband saturation and intrinsic bistability in a step quantum well (1997) Sol. State. Commun., 104, pp. 125-130 | |
dc.relation.references | D'Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., Optical properties of stepped InxGa1-xAs/GaAs quantum wells (1998) Microelectron. Eng., 43-44, pp. 259-263 | |
dc.relation.references | Kim, T.W., Enhancement of the intersubband Stark effectin strained InxGa1-xAs/InyAl1-yAs asymmetric step quantum wells (1998) Appl. Surf. Sci., 125, pp. 213-216 | |
dc.relation.references | Wu, W., Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in In0.05Ga0.95/Al0.32Ga0.68As/Al0.45Ga0.55As asymmetric step quantum wells (2004) Superlattice. Microst., 35, pp. 25-34 | |
dc.relation.references | Barseghyan, M.G., Kirakosyan, A.A., Electronic states in a step quantum well in a magnetic field (2005) Phys. E, 28, pp. 471-481 | |
dc.relation.references | Dakhlaoui, H., Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field (2018) Optik, 168, pp. 416-423 | |
dc.relation.references | Samyh, A., Salhi, W., Rajira, A., Akabli, H., Abounadi, A., Almaggoussi, A., Double two-photon absorption in an asymmetric stepped quantum well in the terahertz range (2019) Superlattice. Microst., 130, pp. 560-568 | |
dc.relation.references | Sauvage, S., Boucaud, P., Julien, F.H., Gérard, J.-M., Marzin, J.-Y., Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots (1997) J. Appl. Phys., 82, pp. 3396-3401 | |
dc.relation.references | Maimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M., Petroff, P.M., Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors (1998) Appl. Phys. Lett., 73, pp. 2003-2005 | |
dc.relation.references | Horváth, Z.J., Dózsa, L., Van Tuyen, V., Pődör, B., Nemcsics, Á., Frigeri, P., Gombia, E., Franchi, S., Growth and electrical characteristics of InAs/GaAs quantum well and quantum dot structures (2000) Thin Sol. Films, 367, pp. 89-92 | |
dc.relation.references | Kapre, R.M., Hu, K., Chen, L., Guha, S., Madhukar, A., Highly strained (InAs)M/(GaAs)N multiple quantum well based resonant tunneling diodes on GaAs (001) substrates and their application in optical switching (1992) Mat. Res. Soc. Symp. Proc., 228, pp. 219-224 | |
dc.relation.references | Aleshkin, V.Y., Gaponova, D.M., Revin, D.G., Vorobjev, L.E., Danilov, S.N., Panevin, V.Y., Fedosov, N.K., Seilmeier, A., Light absorption and emission in InAs/GaAs quantum dots and stepped quantum wells (2002) Proc. SPIE -10th Int. Symp. “Nanostructures: Physics and Technology” St Petersburg, Russia, p. 5. , June 17-21, QWSL | |
dc.relation.references | Podoskin, A., Golovin, V., Gavrina, P., Veselov, D., Zolotarev, V., Shamakhov, V., Nikolaev, D., Kopev, P., Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well (2019) Appl. Opt., 58, pp. 9089-9093 | |
dc.relation.references | Podoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Kopev, P.S., Properties of external-cavity high-power semiconductor lasers based on a single InGaAs quantum well at high pulsed current pump (2020) J. Opt. Soc. Am. B, 37, pp. 784-788 | |
dc.relation.references | Han, L., Zhao, M., Tang, X., Huo, W., Deng, Z., Jiang, Y., Wang, W., Jia, H., Luminescence study in InGaAs/AlGaAs multi-quantum well light emitting diode with p-n junction engineering (2020) J. Appl. Phys., 127 | |
dc.relation.references | Chernov, M.Y., Solov'ev, V.A., Komkov, O.S., Firsov, D.D., Andreev, A.D., Sitnikova, A.A., Ivanov, S.V., Effect of design and stress relaxation on structural, electronic, and luminescence properties of metamorphic InAs(Sb)/In(Ga,Al)As/GaAs mid-IR emitters with a superlattice waveguide (2020) J. Appl. Phys., 127, p. 125706 | |
dc.relation.references | Vinoslavskii, M.N., Belevskii, P.A., Poroshin, V.N., Vainberg, V.V., Baidus, N.V., Effect of barrier width between GaAs/InGaAs/GaAs double coupled quantum wells on bipolar transport and terahertz radiation by hot carriers in lateral electric field (2020) Fiz. Nizk. Temp., 46, pp. 755-761 | |
dc.relation.references | Gadzhiev, I.M., Buyalo, M.S., Payusov, A.S., Bakshaev, I.O., Kolykhalova, E.D., Portnoi, E.L., Generation of picosecond pulses by lasers with distributed feedback at a wavelength of 1064 nm (2020) Tech. Phys. Lett., 46, pp. 316-318 | |
dc.relation.references | Slater, J.C., Koster, G.F., Simplified LCAO method for the periodic potential problem (1954) Phys. Rev., 94, p. 1498 | |
dc.relation.references | Harrison, W.A., Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond (1989), Dover New York | |
dc.relation.references | Papaconstantopoulos, D.A., Mehl, M.J., The Slate–Koster tight-binding method: a computationally efficient and accurate approach (2003) J. Phys. Condens. Matter, 15, p. R413 | |
dc.relation.references | Kent, P.R.C., Hart, G.L.W., Zunger, A., Biaxial strain-modified valence and conduction band offsets of zinc-blende GaN, GaP, GaAs, InN, InP, and InAs, and optical bowing of strained epitaxial InGaN alloys (2002) Appl. Phys. Lett., 81, p. 4377 | |
dc.relation.references | Wei, S.-H., Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals (1998) Appl. Phys. Lett., 72, p. 2011 | |
dc.relation.references | Colombelli, R., Piazza, V., Badolato, A., Lazzarino, M., Beltram, F., Schoenfeld, W., Petroff, P., Conduction-band offset of single InAs monolayers on GaAs (2000) Appl. Phys. Lett., 76, p. 1146 | |
dc.relation.references | Persson, A., Cohen, R.M., Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells (1988) Phys. Rev. B, 38, pp. 5568-5575 | |
dc.relation.references | Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well Mode1 with an applied electric field (1987) IEEE J. Quantum Electron. QE-, 23, p. 2196 | |
dc.relation.references | Ridene, S., Bouchriba, H., Effect of hydrostatic pressure on the hole effective mass in a strained InGaAs/GaAs quantum well (2014) J. Phys. Chem. Sol., 75, pp. 203-211 | |
dc.relation.references | Mazuelas, A., Gonzalez, L., Ponce, F.A., Tapfer, L., Briones, F., Critical thickness determination of InAs, InP and GaP on GaAs by X-ray interference effect and transmission electron microscopy (1993) J. Cryst. Growth, 131, pp. 465-469 | |
dc.relation.references | Ichimura, M., Stillinger-weber potentials for III-V compound semiconductors and their application to the critical thickness calculation for InA/GaAs (1996) Phys. Stat. Sol. A, 153, pp. 431-437 | |
dc.relation.references | Brech, H., Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulations (1998), https://www.iue.tuwien.ac.at/phd/brech/diss.htm, Thesis Technischen Universität Wien | |
dc.relation.references | Rudinsky, M.E., Karpov, S.Y., Lipsanen, H., Romanov, A.E., Critical thickness and bow of pseudomorphic InxGa1-xAs-based heterostructures grown on (001)GaAs and (001)InP substrates (2015) Mater. Phys. Mech., 24, pp. 278-283 | |
dc.relation.references | Bennett, B.R., Strain relaxation in InAs/GaSb heterostructures (1998) Appl. Phys. Lett., 73, pp. 3736-3738 | |
dc.relation.references | Chen, J.F., Lin, Y.C., Chiang, C.H., Chen, R.C.C., Chen, Y.F., Wu, Y.H., Chang, L., How do InAs quantum dots relax when the InAs growth thickness exceeds the dislocation-induced critical thickness? (2012) J. Appl. Phys., 111 | |
dc.relation.references | Ohtake, A., Mano, T., Sakuma, Y., Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates (2020) Sci. Rep., 10, p. 4606 | |
dc.relation.references | Mathematica, Version 12.1 (2020), https://www.wolfram.com/mathematica, Champaign, IL | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |