Mostrar el registro sencillo del ítem

dc.creatorMozo-Vargas J.J.M.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.creatorDuque C.A.
dc.date2021
dc.date.accessioned2021-02-05T14:57:35Z
dc.date.available2021-02-05T14:57:35Z
dc.identifier.issn13698001
dc.identifier.urihttp://hdl.handle.net/11407/5892
dc.descriptionWe use empirical sps
dc.descriptiond5 tight-binding calculations to determine the effects of compressive biaxial lattice strain, perpendicular to the [001] crystal direction, in zinc blende GaAs and InAs. Under that approach, we have been able to compute the behavior of quantities such as the average valence band energy, the energy band gap, the conduction band effective mass, and the spin-orbit split-off energy, as functions of the biaxial strain, within a range from 0 to −7%. Expressions governing these dependencies are reported for both materials. With such information at hand it is possible to calculate the variation of the coefficient of conduction band nonparabolicity due to the presence of strain. Also, the outcome for such quantities allows to evaluate the valence band offset in GaAs/InGaAs heterointerfaces as a consequence of the strain appearing from the difference between the lattice constants of the involved materials. Taking advantage of the above mentioned results, we have performed the calculation of confined conduction band states in step-like asymmetric quantum wells of the GaAs/Inx1Ga1-x1As/Inx2Ga1-x2As/GaAs prototype, using a k→⋅p→ formalism that solves the effective mass equation arising from a bi-cuadratic (nonparabolic) dispersion law. We report the calculation of the optical absorption coefficient related with intraband transitions that involve the ground and first excited energy levels. For that purpose, the study takes into account the variation of the layer widths and compositions. © 2020 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092700561&doi=10.1016%2fj.mssp.2020.105490&partnerID=40&md5=af0fe934a3f658b77cf1f2f7cc1bb57a
dc.sourceMaterials Science in Semiconductor Processing
dc.titleLattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.mssp.2020.105490
dc.subject.keywordConduction bandseng
dc.subject.keywordEnergy gapeng
dc.subject.keywordGallium arsenideeng
dc.subject.keywordIndium arsenideeng
dc.subject.keywordLattice constantseng
dc.subject.keywordLight absorptioneng
dc.subject.keywordOptical latticeseng
dc.subject.keywordQuantum theoryeng
dc.subject.keywordSemiconducting galliumeng
dc.subject.keywordSemiconducting indium gallium arsenideeng
dc.subject.keywordSemiconductor quantum wellseng
dc.subject.keywordSpin orbit couplingeng
dc.subject.keywordValence bandseng
dc.subject.keywordZinc sulfideeng
dc.subject.keywordAsymmetric quantum wellseng
dc.subject.keywordBand nonparabolicityeng
dc.subject.keywordConduction-band stateeng
dc.subject.keywordEffective-mass equationeng
dc.subject.keywordExcited energy leveleng
dc.subject.keywordIntraband transitionseng
dc.subject.keywordOptical absorption coefficientseng
dc.subject.keywordTight-binding calculationseng
dc.subject.keywordIII-V semiconductorseng
dc.relation.citationvolume123
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationMozo-Vargas, J.J.M., Centro de Investigación en Dispositivos Semiconductores-ICUAP, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, Mexico, Instituto de Física, Benemérita Universidad Autńoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, Mexico
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesKane, E.O., Band structure of indium antimonide (1957) J. Phys. Chem. Sol., 1, p. 249
dc.relation.referencesVrehen, Q.H.F., Interband magneto-optical absorption in gallium arsenide (1968) J. Phys. Chem. Sol., 29, p. 129
dc.relation.referencesGolubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., Nonparabolicity and anisotropy of the electron energy spectrum in GaAs (1985) Sov. Phys. JETP, 61, p. 1214
dc.relation.referencesBastard, G., Hydrogenic impurity states in a quantum well: a simple model (1981) Phys. Rev. B, 24, p. 4714
dc.relation.referencesBastard, G., Superlattice band structure in the envelope-function approximation (1981) Phys. Rev. B, 24, p. 5693
dc.relation.referencesBastard, G., Theoretical investigations of superlattice band structure in the envelope-function approximation (1982) Phys. Rev. B, 25, p. 7584
dc.relation.referencesBastard, G., Exciton binding energy in quantum wells (1982) Phys. Rev. B, 26, p. 1974
dc.relation.referencesBurt, M.G., The justification for applying the effective-mass approximation to microstructures (1922) J. Phys. Condens. Matter, 4, p. 6651
dc.relation.referencesBurt, M.G., Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries (1982) Phys. Rev. B, 50, p. 7518
dc.relation.referencesChaudhuri, S., Bajaj, K.K., Effect of nonparabolicity on the energy levels of hydrogenic donors in GaAs-Ga1-xAlxAs quantum-well structures (1984) Phys. Rev. B, 29, p. 1803
dc.relation.referencesMalcher, F., Lommer, G., Rössler, U., Electron states in GaAs/Ga1-xAlxAs heterostructures: Nonparabolicity and spin-splitting (1986) Superlattice. Microst., 2, p. 267
dc.relation.referencesNelson, D.F., Miller, R.C., Kleinman, D.A., Band nonparabolicity effects in semiconductor quantum wells (1987) Phys. Rev. B, 14, p. 7770
dc.relation.referencesEckenberg, U., Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels (1989) Phys. Rev. B, 40, p. 7714
dc.relation.referencesNag, B.R., Mukhopadhyay, S., Energy levels in quantum wells of nonparabolic semiconductors (1993) Phys. Stat. Sol., 175, p. 103
dc.relation.referencesSirtori, C., Capasso, F., Faist, J., Scandolo, S., Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells (1994) Phys. Rev. B, 50, p. 8663
dc.relation.referencesWetzel, C., Winkler, R., Drechsler, M., Meyer, B.K., Rössler, U., Scriba, J., Kotthaus, J.P., Scholz, F., Electron effective mass and nonparabolicity in Ga0.47In0.53As/InP quantum wells (1996) Phys. Rev. B, 53, p. 1038
dc.relation.referencesLi, Y., Voskoboynikov, O., Lee, C.P., Sze, S.M., Energy and coordinate dependent effective mass and confined electron states in quantum dots (2001) Sol. State. Commun., 120, p. 79
dc.relation.referencesLe, K.Q., Finite element analsysis of quantum states in layered quantum semiconductor structures with band nonparabolicity effect (2009) Microw. Opt. Technol. Lett., 51, p. 1
dc.relation.referencesMilanović, V., Radovanović, J., Ramović, S., Influence of nonparabolicity on boundary conditions in semiconductor quantum wells (2009) Phys. Lett., 373, p. 3071
dc.relation.referencesPanda, S., Panda, B.K., Effect of conduction band nonparabolicity on the optical properties in a single quantum well under hydrostatic pressure and electric field (2012) Pramana - J. Phys., 78, p. 827
dc.relation.referencesKotera, N., Energy dependence of electron effective mass and effect of wave function confinement in a nanoscale In0.53Ga0.47As/In0.52Al0.48As quantum well (2013) J. Appl. Phys., 113, p. 234314
dc.relation.referencesBiswas, S., Islam, M.S., Mahbub, I., Adnan, F., Numerical Investigation of the Effects of conduction band Nonparabolicity on the conduction sub-band dispersion Relationships in a Al0.88In0.12N/Ga0.9 (2013) Lecture Notes on Photonics and Optoelectronics, 1, p. 1
dc.relation.referencesBiswas, S., Mahbub, I., Islam, M.S., 0.28 0.72 (2013) Conduction band-valence Band Coupling Effects on the Band Structure of In Ga N/GaN Quantum Well, 2013 Spanish Conference on Electron Devices (CDE), 211. , IEEE
dc.relation.referencesVoković, N., Milanović, V., Radovanović, J., Influence of nonparabolicity on electronic structure of quantum cascade laser (2014) Phys. Lett., 378, p. 2222
dc.relation.referencesBardeen, J., Shockley, W., Deformation potentials and mobilities in non-polar crystals (1950) Phys. Rev., 80, pp. 72-80
dc.relation.referencesBir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (1974), Wiley New York
dc.relation.referencesSingh, J., Strain induced band structure modifications in semiconductor heterostructures and consequences for electronic and optical devices (1991) Condensed Systems of Low Dimensionality. NATO ASI Series (Series B: Physics), 253. , J.L. Beeby P.K. Bhattacharya P.C. Gravelle F. Koch D.J. Lockwood Springer Boston, MA
dc.relation.referencesLamberti, C., The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films (2004) Surf. Sci. Reports, 53, pp. 1-197
dc.relation.referencesSun, Y., Thompson, S.E., Nishida, T., Strain Effect in Semiconductors: Theory and Device Applications (2010), Springer New York
dc.relation.referencesVan de Walle, C.G., Band lineups and deformation potentials in the model-solid theory (1989) Phys. Rev. B, 39, p. 1871
dc.relation.referencesJancu, J.-M., Scholz, R., Beltram, F., Bassani, F., Empirical spds
dc.relation.referencestight-binding calculation for cubic semiconductors: general method and material parameters (1998) Phys. Rev. B, 57, p. 6493
dc.relation.referencesJancu, J.-M., Voisin, P., Tetragonal and trigonal deformations in zinc-blende semiconductors: a tight-binding point of view (2007) Phys. Rev. B, 76, p. 115202
dc.relation.referencesBoykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F., Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory (2002) Phys. Rev. B, 66, p. 125207
dc.relation.referencesNiquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X., Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys (2009) Phys. Rev. B, 79, p. 245201
dc.relation.referencesBoykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G., Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110]uniaxial strain applied to a silicon parametrization (2010) Phys. Rev. B, 81, p. 125202
dc.relation.referencesTan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G., Transferable tight-binding model for strained group IV and III-V materials and heterostructures (2016) Phys. Rev. B, 94
dc.relation.referencesSawamura, A., Otsuka, J., Kato, T., Kotani, T., Souma, S., Nearest-neighbor sp3d5s
dc.relation.referencestight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices (2018) Opt. Mat. Express, 8, p. 1569
dc.relation.referencesMi, Z., Bianucci, P., When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: emerging devices and applications (2012) Curr. Opin. Solid State Mater. Sci., 16, p. 52
dc.relation.referencesIvanov, S.V., Chernov, M.Y., Solov'ev, V.A., Brunkov, P.N., Firsov, D.D., Komkov, O.S., Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters (2019) Prog. Cryst. Growth Charact. Mater., 65, p. 20
dc.relation.referencesYachmenev, A.E., Pushkarev, S.S., Reznik, R.R., Khabibullin, R.A., Ponomarev, D.S., Arsenides-and related III-V materials-based multilayered structures for terahertz applications: various designs and growth technology (2020) Prog. Cryst. Growth Charact. Mater., 2020, p. 100485
dc.relation.referencesChen, X., On the role of local-field effect on optical intersubband saturation and intrinsic bistability in a step quantum well (1997) Sol. State. Commun., 104, pp. 125-130
dc.relation.referencesD'Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., Optical properties of stepped InxGa1-xAs/GaAs quantum wells (1998) Microelectron. Eng., 43-44, pp. 259-263
dc.relation.referencesKim, T.W., Enhancement of the intersubband Stark effectin strained InxGa1-xAs/InyAl1-yAs asymmetric step quantum wells (1998) Appl. Surf. Sci., 125, pp. 213-216
dc.relation.referencesWu, W., Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in In0.05Ga0.95/Al0.32Ga0.68As/Al0.45Ga0.55As asymmetric step quantum wells (2004) Superlattice. Microst., 35, pp. 25-34
dc.relation.referencesBarseghyan, M.G., Kirakosyan, A.A., Electronic states in a step quantum well in a magnetic field (2005) Phys. E, 28, pp. 471-481
dc.relation.referencesDakhlaoui, H., Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field (2018) Optik, 168, pp. 416-423
dc.relation.referencesSamyh, A., Salhi, W., Rajira, A., Akabli, H., Abounadi, A., Almaggoussi, A., Double two-photon absorption in an asymmetric stepped quantum well in the terahertz range (2019) Superlattice. Microst., 130, pp. 560-568
dc.relation.referencesSauvage, S., Boucaud, P., Julien, F.H., Gérard, J.-M., Marzin, J.-Y., Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots (1997) J. Appl. Phys., 82, pp. 3396-3401
dc.relation.referencesMaimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M., Petroff, P.M., Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors (1998) Appl. Phys. Lett., 73, pp. 2003-2005
dc.relation.referencesHorváth, Z.J., Dózsa, L., Van Tuyen, V., Pődör, B., Nemcsics, Á., Frigeri, P., Gombia, E., Franchi, S., Growth and electrical characteristics of InAs/GaAs quantum well and quantum dot structures (2000) Thin Sol. Films, 367, pp. 89-92
dc.relation.referencesKapre, R.M., Hu, K., Chen, L., Guha, S., Madhukar, A., Highly strained (InAs)M/(GaAs)N multiple quantum well based resonant tunneling diodes on GaAs (001) substrates and their application in optical switching (1992) Mat. Res. Soc. Symp. Proc., 228, pp. 219-224
dc.relation.referencesAleshkin, V.Y., Gaponova, D.M., Revin, D.G., Vorobjev, L.E., Danilov, S.N., Panevin, V.Y., Fedosov, N.K., Seilmeier, A., Light absorption and emission in InAs/GaAs quantum dots and stepped quantum wells (2002) Proc. SPIE -10th Int. Symp. “Nanostructures: Physics and Technology” St Petersburg, Russia, p. 5. , June 17-21, QWSL
dc.relation.referencesPodoskin, A., Golovin, V., Gavrina, P., Veselov, D., Zolotarev, V., Shamakhov, V., Nikolaev, D., Kopev, P., Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well (2019) Appl. Opt., 58, pp. 9089-9093
dc.relation.referencesPodoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Kopev, P.S., Properties of external-cavity high-power semiconductor lasers based on a single InGaAs quantum well at high pulsed current pump (2020) J. Opt. Soc. Am. B, 37, pp. 784-788
dc.relation.referencesHan, L., Zhao, M., Tang, X., Huo, W., Deng, Z., Jiang, Y., Wang, W., Jia, H., Luminescence study in InGaAs/AlGaAs multi-quantum well light emitting diode with p-n junction engineering (2020) J. Appl. Phys., 127
dc.relation.referencesChernov, M.Y., Solov'ev, V.A., Komkov, O.S., Firsov, D.D., Andreev, A.D., Sitnikova, A.A., Ivanov, S.V., Effect of design and stress relaxation on structural, electronic, and luminescence properties of metamorphic InAs(Sb)/In(Ga,Al)As/GaAs mid-IR emitters with a superlattice waveguide (2020) J. Appl. Phys., 127, p. 125706
dc.relation.referencesVinoslavskii, M.N., Belevskii, P.A., Poroshin, V.N., Vainberg, V.V., Baidus, N.V., Effect of barrier width between GaAs/InGaAs/GaAs double coupled quantum wells on bipolar transport and terahertz radiation by hot carriers in lateral electric field (2020) Fiz. Nizk. Temp., 46, pp. 755-761
dc.relation.referencesGadzhiev, I.M., Buyalo, M.S., Payusov, A.S., Bakshaev, I.O., Kolykhalova, E.D., Portnoi, E.L., Generation of picosecond pulses by lasers with distributed feedback at a wavelength of 1064 nm (2020) Tech. Phys. Lett., 46, pp. 316-318
dc.relation.referencesSlater, J.C., Koster, G.F., Simplified LCAO method for the periodic potential problem (1954) Phys. Rev., 94, p. 1498
dc.relation.referencesHarrison, W.A., Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond (1989), Dover New York
dc.relation.referencesPapaconstantopoulos, D.A., Mehl, M.J., The Slate–Koster tight-binding method: a computationally efficient and accurate approach (2003) J. Phys. Condens. Matter, 15, p. R413
dc.relation.referencesKent, P.R.C., Hart, G.L.W., Zunger, A., Biaxial strain-modified valence and conduction band offsets of zinc-blende GaN, GaP, GaAs, InN, InP, and InAs, and optical bowing of strained epitaxial InGaN alloys (2002) Appl. Phys. Lett., 81, p. 4377
dc.relation.referencesWei, S.-H., Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals (1998) Appl. Phys. Lett., 72, p. 2011
dc.relation.referencesColombelli, R., Piazza, V., Badolato, A., Lazzarino, M., Beltram, F., Schoenfeld, W., Petroff, P., Conduction-band offset of single InAs monolayers on GaAs (2000) Appl. Phys. Lett., 76, p. 1146
dc.relation.referencesPersson, A., Cohen, R.M., Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells (1988) Phys. Rev. B, 38, pp. 5568-5575
dc.relation.referencesAhn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well Mode1 with an applied electric field (1987) IEEE J. Quantum Electron. QE-, 23, p. 2196
dc.relation.referencesRidene, S., Bouchriba, H., Effect of hydrostatic pressure on the hole effective mass in a strained InGaAs/GaAs quantum well (2014) J. Phys. Chem. Sol., 75, pp. 203-211
dc.relation.referencesMazuelas, A., Gonzalez, L., Ponce, F.A., Tapfer, L., Briones, F., Critical thickness determination of InAs, InP and GaP on GaAs by X-ray interference effect and transmission electron microscopy (1993) J. Cryst. Growth, 131, pp. 465-469
dc.relation.referencesIchimura, M., Stillinger-weber potentials for III-V compound semiconductors and their application to the critical thickness calculation for InA/GaAs (1996) Phys. Stat. Sol. A, 153, pp. 431-437
dc.relation.referencesBrech, H., Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulations (1998), https://www.iue.tuwien.ac.at/phd/brech/diss.htm, Thesis Technischen Universität Wien
dc.relation.referencesRudinsky, M.E., Karpov, S.Y., Lipsanen, H., Romanov, A.E., Critical thickness and bow of pseudomorphic InxGa1-xAs-based heterostructures grown on (001)GaAs and (001)InP substrates (2015) Mater. Phys. Mech., 24, pp. 278-283
dc.relation.referencesBennett, B.R., Strain relaxation in InAs/GaSb heterostructures (1998) Appl. Phys. Lett., 73, pp. 3736-3738
dc.relation.referencesChen, J.F., Lin, Y.C., Chiang, C.H., Chen, R.C.C., Chen, Y.F., Wu, Y.H., Chang, L., How do InAs quantum dots relax when the InAs growth thickness exceeds the dislocation-induced critical thickness? (2012) J. Appl. Phys., 111
dc.relation.referencesOhtake, A., Mano, T., Sakuma, Y., Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates (2020) Sci. Rep., 10, p. 4606
dc.relation.referencesMathematica, Version 12.1 (2020), https://www.wolfram.com/mathematica, Champaign, IL
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem