Mostrar el registro sencillo del ítem

dc.creatorOrozco-Duque A.
dc.creatorUgarte J.P.
dc.creatorTobón C.
dc.date2021
dc.date.accessioned2021-02-05T14:57:36Z
dc.date.available2021-02-05T14:57:36Z
dc.identifier.issn10075704
dc.identifier.urihttp://hdl.handle.net/11407/5893
dc.descriptionStable rotors have been proposed as mechanisms that maintain atrial fibrillation which is the most common arrhythmia worldwide. The information of intracardiac electrograms (EGMs), recorded through multielectrode arrays, is used to characterize the electrical conduction dynamics and thus to identify rotors or reentrant propagating waves. Most of the methods of EGMs processing are based on the assessment of the individual properties of each EGM signal. Additionally, synchronization indices have been proposed to evaluate the properties of the conduction patterns by means of multivariate analysis. However, the problem of rotor detection through EGMs remains open. We evaluate the behavior of four local synchronization indices using computational simulations of different conduction patterns and the corresponding EGMs in 2D models. The results show that phase synchronization exhibits better performance than correlation, coherence, and mutual information for detecting rotors under different fibrillatory patterns. We also show that this approach outperforms a previously reported technique based on entropy analysis of individual EGM. Synchronization maps using phase-locking values calculated from adjacent EGM highlight the vicinity of the core of stable rotors, even in the presence of multiple wavefronts and wave breaks. Therefore, phase-locking maps can be a useful tool for characterizing rotors during atrial fibrillation episodes. © 2020
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092479892&doi=10.1016%2fj.cnsns.2020.105548&partnerID=40&md5=8cffda396651c89620cf84dd152cfce1
dc.sourceCommunications in Nonlinear Science and Numerical Simulation
dc.subjectatrial fibrillationspa
dc.subjectElectrogramsspa
dc.subjectrotorsspa
dc.subjectsignal processingspa
dc.titleLocal synchronization indices for rotors detection in atrial fibrillation: A simulation study
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.cnsns.2020.105548
dc.subject.keywordDiseaseseng
dc.subject.keywordLocks (fasteners)eng
dc.subject.keywordMultivariant analysiseng
dc.subject.keywordComputational simulationeng
dc.subject.keywordElectrical conductioneng
dc.subject.keywordIntracardiac electrogramseng
dc.subject.keywordLocal synchronizationseng
dc.subject.keywordMulti variate analysiseng
dc.subject.keywordMultielectrode arrayseng
dc.subject.keywordPhase synchronizationeng
dc.subject.keywordSynchronization indexeng
dc.subject.keywordSynchronizationeng
dc.relation.citationvolume94
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationOrozco-Duque, A., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesJalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation (2002) Cardiovasc. Res., 54 (2), pp. 204-216
dc.relation.referencesNarayan, S.M., Shivkumar, K., Krummen, D.E., Miller, J.M., Rappel, W.-J., Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms (2013) Circ Arrhythm Electrophysiol, 6 (1), pp. 58-67
dc.relation.referencesNarayan, S.M., Krummen, D.E., Rappel, W.-J., Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation (2012) J Cardiovasc Electrophysiol, 23 (5), pp. 447-454
dc.relation.referencesHaissaguerre, M., Hocini, M., Denis, A., Shah, A.J., Komatsu, Y., Yamashita, S., Driver domains in persistent atrial fibrillation (2014) Circulation, 130 (7), pp. 530-538
dc.relation.referencesPodziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J., Rotors detected by phase analysis of filtered, epicardial atrial fibrillation electrograms colocalize with regions of conduction block (2018) Circ Arrhythm Electrophysiol, 11 (10), p. e005858
dc.relation.referencesNarayan, S.M., Baykaner, T., Clopton, P., Schricker, A., Lalani, G.G., Krummen, D.E., Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the confirm trial (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) (2014) J Am Coll Cardiol, 63 (17), pp. 1761-1768
dc.relation.referencesRavelli, F., Masè, M., Computational mapping in atrial fibrillation: how the integration of signal-derived maps may guide the localization of critical sources (2014) Europace, 16 (5), pp. 714-723
dc.relation.referencesUgarte, J.P., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PloS One, 9 (12)
dc.relation.referencesUgarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: an in-silico study (2019) Entropy, 21 (2), p. 194
dc.relation.referencesLin, Y.-J., Lo, M.-T., Chang, S.-L., Lo, L.-W., Hu, Y.-F., Chao, T.-F., Benefits of atrial substrate modification guided by electrogram similarity and phase mapping techniques to eliminate rotors and focal sources versus conventional defragmentation in persistent atrial fibrillation (2016) JACC Clin Electrophysiol, 2 (6), pp. 667-678
dc.relation.referencesKuklik, P., Zeemering, S., van Hunnik, A., Maesen, B., Pison, L., Lau, D.H., Identification of rotors during human atrial fibrillation using contact mapping and phase singularity detection: technical considerations (2016) IEEE Trans Biomed Eng, 64 (2), pp. 310-318
dc.relation.referencesPandit, S.V., Jalife, J., Rotors and the dynamics of cardiac fibrillation (2013) Circ Res, 112 (5), pp. 849-862
dc.relation.referencesVijayakumar, R., Vasireddi, S.K., Cuculich, P.S., Faddis, M.N., Rudy, Y., Methodology considerations in phase mapping of human cardiac arrhythmias (2016) Circ Arrhythm Electrophysiol, 9 (11), p. e004409
dc.relation.referencesVidmar, D., Narayan, S.M., Rappel, W.-J., Phase synchrony reveals organization in human atrial fibrillation (2015) Am J Physiol-HeartCirc Physiol, 309 (12), pp. H2118-H2126
dc.relation.referencesZeemering, S., Podziemski, P., van Hunnik, A., Maesen, B., Bonizzi, P., Schotten, U., Electrogram coupling as a measure of local conduction during atrial fibrillation (2015) 2015 Computing in cardiology conference (CinC), pp. 813-816. , IEEE
dc.relation.referencesBarbaro, V., Bartolini, P., Calcagnini, G., Censi, F., Michelucci, A., Measure of synchronisation of right atrial depolarisation wavefronts during atrial fibrillation (2002) Med Biol Eng Comput, 40 (1), pp. 56-62
dc.relation.referencesKuklik, P., Schäffer, B., Hoffmann, B.A., Ganesan, A.N., Schreiber, D., Moser, J.M., Local electrical dyssynchrony during atrial fibrillation: theoretical considerations and initial catheter ablation results (2016) PloS One, 11 (10), p. e0164236
dc.relation.referencesLiang, Z., Bai, Y., Li X. Synchronization measures in EEG signals. 2016
dc.relation.referencesSazonov, A.V., Ho, C.K., Bergmans, J.W., Arends, J.B., Griep, P.A., Verbitskiy, E.A., An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the eeg (2009) Biol Cybern, 100 (2), p. 129
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model (1998) Am J Physiol-HeartCirc Physiol, 275 (1), pp. H301-H321
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ Res, 90 (9), pp. e73-e87
dc.relation.referencesFenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity (2002) Chaos, 12 (3), pp. 852-892
dc.relation.referencesUgarte, J.P., Tobón, C., Lopes, A.M., Machado, J., Atrial rotor dynamics under complex fractional order diffusion (2018) Front Physiol, 9, p. 975
dc.relation.referencesYang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl Math Modell, 34, pp. 200-218
dc.relation.referencesZwillinger, D., Kokoska, S., Standard probability and statistics tables and formulae (1999), CRC Press
dc.relation.referencesRoss, B.C., Mutual information between discrete and continuous data sets (2014) PloS One, 9 (2)
dc.relation.referencesNiso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., Hermes: towards an integrated toolbox to characterize functional and effective brain connectivity (2013) Neuroinformatics, 11 (4), pp. 405-434
dc.relation.referencesAydore, S., Pantazis, D., Leahy, R.M., A note on the phase locking value and its properties (2013) Neuroimage, 74, pp. 231-244
dc.relation.referencesKuklik, P., Zeemering, S., Maesen, B., Maessen, J., Crijns, H.J., Verheule, S., Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and hilbert transform (2014) IEEE Trans Biomed Eng, 62 (1), pp. 296-302
dc.relation.referencesRoney, C.H., Cantwell, C.D., Qureshi, N.A., Chowdhury, R.A., Dupont, E., Lim, P.B., Rotor tracking using phase of electrograms recorded during atrial fibrillation (2017) Ann Biomed Eng, 45 (4), pp. 910-923
dc.relation.referencesPincus, S.M., Approximate entropy as a measure of system complexity. (1991) ProcNatl Acad Sci, 88 (6), pp. 2297-2301
dc.relation.referencesMainardi, L., Porta, A., Calcagnini, G., Bartolini, P., Michelucci, A., Cerutti, S., Linear and non-linear analysis of atrial signals and local activation period series during atrial-fibrillation episodes (2001) Med Biol Eng Comput, 39 (2), pp. 249-254
dc.relation.referencesMainardi, L.T., Corino, V.D., Lombardi, L., Tondo, C., Mantica, M., Lombardi, F., Linear and nonlinear coupling between atrial signals (2006) IEEE Eng Med Biol Mag, 25 (6), pp. 63-70
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem