Mostrar el registro sencillo del ítem

dc.creatorKoverga A.A.
dc.creatorFlórez E.
dc.creatorJimenez-Orozco C.
dc.creatorRodriguez J.A.
dc.date2021
dc.date.accessioned2021-02-05T14:57:38Z
dc.date.available2021-02-05T14:57:38Z
dc.identifier.issn134686
dc.identifier.urihttp://hdl.handle.net/11407/5897
dc.descriptionThe adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and a D3 van der Waals corrections. The theoretical insight has been gained into atomic hydrogen interaction with Pt monolayer, supported on both molybdenum and well-studied tungsten carbide, and considering hydrogen surface coverage. Fundamental properties of Pt adlayer depend on the support, affecting hydrogen evolution activity of the resulting systems. At low hydrogen coverage all systems, with the exception of Pt supported on the molybdenum-terminated Mo2C, adsorb H comparably to a pristine Pt(111) surface and their high activity for the hydrogen evolution reaction is predicted. At higher coverages supported Pt monolayers interact with atomic hydrogen unlike the Pt(111), suggesting that the activity of the supported and unsupported platinum toward hydrogen evolution reaction have different origins. Furthermore, the position of the supported platinum monolayers on the volcano curve is a function of the surface coverage, more so than for extended metal surfaces. Therefore, hydrogen surface coverage is a key variable to understand the catalytic potential, approaching towards an improved model for screening of electrocatalytic systems. © 2020 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688
dc.sourceElectrochimica Acta
dc.subjectDFTspa
dc.subjectElectrocatalysisspa
dc.subjectHERspa
dc.subjectPtspa
dc.subjectSupported monolayerspa
dc.subjectTMCspa
dc.titleNot all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.electacta.2020.137598
dc.subject.keywordAtomseng
dc.subject.keywordCurve fittingeng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordHydrogeneng
dc.subject.keywordHydrogen evolution reactioneng
dc.subject.keywordMonolayerseng
dc.subject.keywordTungsten carbideeng
dc.subject.keywordVan der Waals forceseng
dc.subject.keywordAtomic hydrogen interactioneng
dc.subject.keywordCatalytic potentialeng
dc.subject.keywordEffect of the supporteng
dc.subject.keywordElectrocatalytic systemeng
dc.subject.keywordExchange-correlation functionalseng
dc.subject.keywordFundamental propertieseng
dc.subject.keywordPlatinum monolayerseng
dc.subject.keywordVan der Waals correctioneng
dc.subject.keywordPlatinumeng
dc.relation.citationvolume368
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationKoverga, A.A., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesYoun, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173
dc.relation.referencesZheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184
dc.relation.referencesConway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541
dc.relation.referencesMarković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229
dc.relation.referencesYang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808
dc.relation.referencesGordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214
dc.relation.referencesEsposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862
dc.relation.referencesEsposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.)
dc.relation.referencesWeidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17
dc.relation.referencesGómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372
dc.relation.referencesEsposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900
dc.relation.referencesKelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81
dc.relation.referencesMa, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
dc.relation.referencesVasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
dc.relation.referencesKurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International Publishing
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795
dc.relation.referencesdos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of Chemistry
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesKresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesBlöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979
dc.relation.referencesJoubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesGrimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143
dc.relation.referencesBader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.K
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360
dc.relation.referencesKoverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253
dc.relation.referencesMomma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.relation.referencesYu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590
dc.relation.referencesGudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323
dc.relation.referencesPašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314
dc.relation.referencesDa Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715
dc.relation.referencesKrishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234
dc.relation.referencesHammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220
dc.relation.referencesHammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240
dc.relation.referencesPaßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933
dc.relation.referencesDuan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490
dc.relation.referencesStamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967
dc.relation.referencesMichalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278
dc.relation.referencesZhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422
dc.relation.referencesOlsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163
dc.relation.referencesSilveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343
dc.relation.referencesPiñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020
dc.relation.referencesZheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80
dc.relation.referencesTong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585
dc.relation.referencesKhoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412
dc.relation.referencesBeaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796
dc.relation.referencesMerte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.)
dc.relation.referencesLi, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058
dc.relation.referencesSabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et Liege
dc.relation.referencesConway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083
dc.relation.referencesHamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898
dc.relation.referencesShi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49
dc.relation.referencesYan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149
dc.relation.referencesJimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222
dc.relation.referencesTrasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New York
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem