Mostrar el registro sencillo del ítem

dc.creatorRamirez A.
dc.creatorPérez S.
dc.creatorFlórez E.
dc.creatorAcelas N.
dc.date2021
dc.date.accessioned2021-02-05T14:57:41Z
dc.date.available2021-02-05T14:57:41Z
dc.identifier.issn22133437
dc.identifier.urihttp://hdl.handle.net/11407/5902
dc.descriptionPhosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd.
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce58
dc.sourceJournal of Environmental Chemical Engineering
dc.subjectBiomassspa
dc.subjectCalcium phosphatespa
dc.subjectHydroxyapatitespa
dc.subjectPhosphate recyclingspa
dc.subjectWater hyacinthspa
dc.titleUtilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.jece.2020.104776
dc.subject.keywordBiochemistryeng
dc.subject.keywordCalcinationeng
dc.subject.keywordCalciteeng
dc.subject.keywordCalcium carbonateeng
dc.subject.keywordCalcium oxideeng
dc.subject.keywordDeionized watereng
dc.subject.keywordFertilizerseng
dc.subject.keywordHydrated limeeng
dc.subject.keywordHydroxyapatiteeng
dc.subject.keywordMolar ratioeng
dc.subject.keywordCalcination temperatureeng
dc.subject.keywordP supplieseng
dc.subject.keywordSlow releaseeng
dc.subject.keywordWater Hyacintheng
dc.subject.keywordCalciumeng
dc.relation.citationvolume9
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRamirez, A., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationPérez, S., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationFlórez, E., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationAcelas, N., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia
dc.relation.referencesZhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583
dc.relation.referencesCai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219
dc.relation.referencesMasto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71
dc.relation.referencesKumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428
dc.relation.referencesZhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984
dc.relation.referencesSalas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass Valorization
dc.relation.referencesDotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36
dc.relation.referencesPeres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659
dc.relation.referencesShi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914
dc.relation.referencesRomán, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658
dc.relation.referencesOmondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1
dc.relation.referencesBlessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203
dc.relation.referencesOgutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14
dc.relation.referencesAcelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119
dc.relation.referencesRamirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137
dc.relation.referencesBouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140
dc.relation.referencesPettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244
dc.relation.referencesTao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158
dc.relation.referencesLi, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123
dc.relation.referencesAcelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175
dc.relation.referencesTan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602
dc.relation.referencesDing, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232
dc.relation.referencesZhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73
dc.relation.referencesZhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193
dc.relation.referencesMignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10
dc.relation.referencesGuedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892
dc.relation.referencesOttosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969
dc.relation.referencesFang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng.
dc.relation.referencesTang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177
dc.relation.referencesChen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450
dc.relation.referencesOliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758
dc.relation.referencesOliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250
dc.relation.referencesShiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200
dc.relation.referencesZheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786
dc.relation.referencesLiu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77
dc.relation.referencesYesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16
dc.relation.referencesMosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363
dc.relation.referencesSudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769
dc.relation.referencesBronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235
dc.relation.referencesAllam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927
dc.relation.referencesOhtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92
dc.relation.referencesJiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256
dc.relation.referencesWestholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36
dc.relation.referencesJung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372
dc.relation.referencesSantos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459
dc.relation.referencesWhite, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511
dc.relation.referencesSukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010
dc.relation.referencesBerzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol.
dc.relation.referencesReig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821
dc.relation.referencesWilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177
dc.relation.referencesDelgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242
dc.relation.referencesAyodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168
dc.relation.referencesWeiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196
dc.relation.referencesSurovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642
dc.relation.referencesRamesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530
dc.relation.referencesTõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659
dc.relation.referencesHuang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474
dc.relation.referencesTürk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535
dc.relation.referencesKim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88
dc.relation.referencesRaynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072
dc.relation.referencesDong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218
dc.relation.referencesZou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304
dc.relation.referencesJohansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265
dc.relation.referencesMoriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252
dc.relation.referencesMarriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524
dc.relation.referencesPtáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79
dc.relation.referencesTakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154
dc.relation.referencesKleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem