dc.creator | Ramirez A. | |
dc.creator | Pérez S. | |
dc.creator | Flórez E. | |
dc.creator | Acelas N. | |
dc.date | 2021 | |
dc.date.accessioned | 2021-02-05T14:57:41Z | |
dc.date.available | 2021-02-05T14:57:41Z | |
dc.identifier.issn | 22133437 | |
dc.identifier.uri | http://hdl.handle.net/11407/5902 | |
dc.description | Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd. | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce58 | |
dc.source | Journal of Environmental Chemical Engineering | |
dc.subject | Biomass | spa |
dc.subject | Calcium phosphate | spa |
dc.subject | Hydroxyapatite | spa |
dc.subject | Phosphate recycling | spa |
dc.subject | Water hyacinth | spa |
dc.title | Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1016/j.jece.2020.104776 | |
dc.subject.keyword | Biochemistry | eng |
dc.subject.keyword | Calcination | eng |
dc.subject.keyword | Calcite | eng |
dc.subject.keyword | Calcium carbonate | eng |
dc.subject.keyword | Calcium oxide | eng |
dc.subject.keyword | Deionized water | eng |
dc.subject.keyword | Fertilizers | eng |
dc.subject.keyword | Hydrated lime | eng |
dc.subject.keyword | Hydroxyapatite | eng |
dc.subject.keyword | Molar ratio | eng |
dc.subject.keyword | Calcination temperature | eng |
dc.subject.keyword | P supplies | eng |
dc.subject.keyword | Slow release | eng |
dc.subject.keyword | Water Hyacinth | eng |
dc.subject.keyword | Calcium | eng |
dc.relation.citationvolume | 9 | |
dc.relation.citationissue | 1 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Ramirez, A., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia | |
dc.affiliation | Pérez, S., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia | |
dc.affiliation | Flórez, E., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia | |
dc.affiliation | Acelas, N., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombia | |
dc.relation.references | Zhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583 | |
dc.relation.references | Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219 | |
dc.relation.references | Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71 | |
dc.relation.references | Kumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428 | |
dc.relation.references | Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984 | |
dc.relation.references | Salas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass Valorization | |
dc.relation.references | Dotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36 | |
dc.relation.references | Peres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659 | |
dc.relation.references | Shi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914 | |
dc.relation.references | Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658 | |
dc.relation.references | Omondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1 | |
dc.relation.references | Blessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203 | |
dc.relation.references | Ogutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14 | |
dc.relation.references | Acelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479 | |
dc.relation.references | Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119 | |
dc.relation.references | Ramirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137 | |
dc.relation.references | Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140 | |
dc.relation.references | Pettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244 | |
dc.relation.references | Tao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158 | |
dc.relation.references | Li, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123 | |
dc.relation.references | Acelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175 | |
dc.relation.references | Tan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602 | |
dc.relation.references | Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232 | |
dc.relation.references | Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73 | |
dc.relation.references | Zhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193 | |
dc.relation.references | Mignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10 | |
dc.relation.references | Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892 | |
dc.relation.references | Ottosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969 | |
dc.relation.references | Fang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng. | |
dc.relation.references | Tang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177 | |
dc.relation.references | Chen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450 | |
dc.relation.references | Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758 | |
dc.relation.references | Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250 | |
dc.relation.references | Shiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200 | |
dc.relation.references | Zheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786 | |
dc.relation.references | Liu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77 | |
dc.relation.references | Yesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16 | |
dc.relation.references | Mosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363 | |
dc.relation.references | Sudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769 | |
dc.relation.references | Bronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235 | |
dc.relation.references | Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927 | |
dc.relation.references | Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92 | |
dc.relation.references | Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256 | |
dc.relation.references | Westholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36 | |
dc.relation.references | Jung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372 | |
dc.relation.references | Santos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459 | |
dc.relation.references | White, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511 | |
dc.relation.references | Sukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010 | |
dc.relation.references | Berzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol. | |
dc.relation.references | Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821 | |
dc.relation.references | Wilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177 | |
dc.relation.references | Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242 | |
dc.relation.references | Ayodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168 | |
dc.relation.references | Weiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196 | |
dc.relation.references | Surovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642 | |
dc.relation.references | Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530 | |
dc.relation.references | Tõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659 | |
dc.relation.references | Huang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474 | |
dc.relation.references | Türk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535 | |
dc.relation.references | Kim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88 | |
dc.relation.references | Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072 | |
dc.relation.references | Dong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218 | |
dc.relation.references | Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304 | |
dc.relation.references | Johansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265 | |
dc.relation.references | Moriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252 | |
dc.relation.references | Marriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524 | |
dc.relation.references | Ptáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79 | |
dc.relation.references | TakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154 | |
dc.relation.references | Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |