REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A COMPLEX ORDER MODEL of ATRIAL ELECTRICAL PROPAGATION from FRACTAL POROUS CELL MEMBRANE

Thumbnail
Share this
Author
Ugarte J.P.
Tobón C.
Lopes A.M.
Machado J.A.T.

Citación

       
TY - GEN T1 - A COMPLEX ORDER MODEL of ATRIAL ELECTRICAL PROPAGATION from FRACTAL POROUS CELL MEMBRANE AU - Ugarte J.P. AU - Tobón C. AU - Lopes A.M. AU - Machado J.A.T. UR - http://hdl.handle.net/11407/5904 PB - World Scientific AB - Cardiac tissue is characterized by structural and cellular heterogeneities that play an important role in the cardiac conduction system. Under persistent atrial fibrillation (persAF), electrical and structural remodeling occur simultaneously. The classical mathematical models of cardiac electrophysiological showed remarkable progress during recent years. Among those models, it is of relevance the standard diffusion mathematical equation, that considers the myocardium as a continuum. However, the modeling of structural properties and their influence on electrical propagation still reveal several limitations. In this paper, a model of cardiac electrical propagation is proposed based on complex order derivatives. By assuming that the myocardium has an underlying fractal process, the complex order dynamics emerges as an important modeling option. In this perspective, the real part of the order corresponds to the fractal dimension, while the imaginary part represents the log-periodic corrections of the fractal dimension. Indeed, the imaginary part in the derivative implies characteristic scales within the cardiac tissue. The analytical and numerical procedures for solving the related equation are presented. The sinus rhythm and persAF conditions are implemented using the Courtemanche formalism. The electrophysiological properties are measured and analyzed on different scales of observation. The results indicate that the complex order modulates the electrophysiology of the atrial system, through the variation of its real and imaginary parts. The combined effect of the two components yields a broad range of electrophysiological conditions. Therefore, the proposed model can be a useful tool for modeling electrical and structural properties during cardiac conduction. © 2020 World Scientific Publishing Company. ER - @misc{11407_5904, author = {Ugarte J.P. and Tobón C. and Lopes A.M. and Machado J.A.T.}, title = {A COMPLEX ORDER MODEL of ATRIAL ELECTRICAL PROPAGATION from FRACTAL POROUS CELL MEMBRANE}, year = {}, abstract = {Cardiac tissue is characterized by structural and cellular heterogeneities that play an important role in the cardiac conduction system. Under persistent atrial fibrillation (persAF), electrical and structural remodeling occur simultaneously. The classical mathematical models of cardiac electrophysiological showed remarkable progress during recent years. Among those models, it is of relevance the standard diffusion mathematical equation, that considers the myocardium as a continuum. However, the modeling of structural properties and their influence on electrical propagation still reveal several limitations. In this paper, a model of cardiac electrical propagation is proposed based on complex order derivatives. By assuming that the myocardium has an underlying fractal process, the complex order dynamics emerges as an important modeling option. In this perspective, the real part of the order corresponds to the fractal dimension, while the imaginary part represents the log-periodic corrections of the fractal dimension. Indeed, the imaginary part in the derivative implies characteristic scales within the cardiac tissue. The analytical and numerical procedures for solving the related equation are presented. The sinus rhythm and persAF conditions are implemented using the Courtemanche formalism. The electrophysiological properties are measured and analyzed on different scales of observation. The results indicate that the complex order modulates the electrophysiology of the atrial system, through the variation of its real and imaginary parts. The combined effect of the two components yields a broad range of electrophysiological conditions. Therefore, the proposed model can be a useful tool for modeling electrical and structural properties during cardiac conduction. © 2020 World Scientific Publishing Company.}, url = {http://hdl.handle.net/11407/5904} }RT Generic T1 A COMPLEX ORDER MODEL of ATRIAL ELECTRICAL PROPAGATION from FRACTAL POROUS CELL MEMBRANE A1 Ugarte J.P. A1 Tobón C. A1 Lopes A.M. A1 Machado J.A.T. LK http://hdl.handle.net/11407/5904 PB World Scientific AB Cardiac tissue is characterized by structural and cellular heterogeneities that play an important role in the cardiac conduction system. Under persistent atrial fibrillation (persAF), electrical and structural remodeling occur simultaneously. The classical mathematical models of cardiac electrophysiological showed remarkable progress during recent years. Among those models, it is of relevance the standard diffusion mathematical equation, that considers the myocardium as a continuum. However, the modeling of structural properties and their influence on electrical propagation still reveal several limitations. In this paper, a model of cardiac electrical propagation is proposed based on complex order derivatives. By assuming that the myocardium has an underlying fractal process, the complex order dynamics emerges as an important modeling option. In this perspective, the real part of the order corresponds to the fractal dimension, while the imaginary part represents the log-periodic corrections of the fractal dimension. Indeed, the imaginary part in the derivative implies characteristic scales within the cardiac tissue. The analytical and numerical procedures for solving the related equation are presented. The sinus rhythm and persAF conditions are implemented using the Courtemanche formalism. The electrophysiological properties are measured and analyzed on different scales of observation. The results indicate that the complex order modulates the electrophysiology of the atrial system, through the variation of its real and imaginary parts. The combined effect of the two components yields a broad range of electrophysiological conditions. Therefore, the proposed model can be a useful tool for modeling electrical and structural properties during cardiac conduction. © 2020 World Scientific Publishing Company. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Cardiac tissue is characterized by structural and cellular heterogeneities that play an important role in the cardiac conduction system. Under persistent atrial fibrillation (persAF), electrical and structural remodeling occur simultaneously. The classical mathematical models of cardiac electrophysiological showed remarkable progress during recent years. Among those models, it is of relevance the standard diffusion mathematical equation, that considers the myocardium as a continuum. However, the modeling of structural properties and their influence on electrical propagation still reveal several limitations. In this paper, a model of cardiac electrical propagation is proposed based on complex order derivatives. By assuming that the myocardium has an underlying fractal process, the complex order dynamics emerges as an important modeling option. In this perspective, the real part of the order corresponds to the fractal dimension, while the imaginary part represents the log-periodic corrections of the fractal dimension. Indeed, the imaginary part in the derivative implies characteristic scales within the cardiac tissue. The analytical and numerical procedures for solving the related equation are presented. The sinus rhythm and persAF conditions are implemented using the Courtemanche formalism. The electrophysiological properties are measured and analyzed on different scales of observation. The results indicate that the complex order modulates the electrophysiology of the atrial system, through the variation of its real and imaginary parts. The combined effect of the two components yields a broad range of electrophysiological conditions. Therefore, the proposed model can be a useful tool for modeling electrical and structural properties during cardiac conduction. © 2020 World Scientific Publishing Company.
URI
http://hdl.handle.net/11407/5904
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com