Mostrar el registro sencillo del ítem

dc.creatorCamacho F.
dc.creatorMoreno E.
dc.creatorGarcia-Alles L.F.
dc.creatorChinea Santiago G.
dc.creatorGilleron M.
dc.creatorVasquez A.
dc.creatorChoong Y.S.
dc.creatorReyes F.
dc.creatorNorazmi M.N.
dc.creatorSarmiento M.E.
dc.creatorAcosta A.
dc.date2020
dc.date.accessioned2021-02-05T14:57:45Z
dc.date.available2021-02-05T14:57:45Z
dc.identifier.issn16643224
dc.identifier.urihttp://hdl.handle.net/11407/5906
dc.descriptionLipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications. © Copyright © 2020 Camacho, Moreno, Garcia-Alles, Chinea Santiago, Gilleron, Vasquez, Choong, Reyes, Norazmi, Sarmiento and Acosta.
dc.language.isoeng
dc.publisherFrontiers Media S.A.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094679922&doi=10.3389%2ffimmu.2020.566710&partnerID=40&md5=4cbb6ca3c226a0faf9e350ff254de0de
dc.sourceFrontiers in Immunology
dc.subjectAc2SGLspa
dc.subjectCD1bspa
dc.subjectendogenous spacerspa
dc.subjectMycobacterium tuberculosisspa
dc.subjectscTCRspa
dc.subjectsulfoglycolipidsspa
dc.titleA Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.3389/fimmu.2020.566710
dc.subject.keywordamino acideng
dc.subject.keywordCD1b antigeneng
dc.subject.keywordglucoseeng
dc.subject.keywordglucose monomycolateeng
dc.subject.keywordMycobacterium antigeneng
dc.subject.keywordsulfuric acideng
dc.subject.keywordT lymphocyte receptoreng
dc.subject.keywordunclassified drugeng
dc.subject.keywordArticleeng
dc.subject.keywordcrystal structureeng
dc.subject.keywordenzyme linked immunosorbent assayeng
dc.subject.keywordhumaneng
dc.subject.keywordhypothesiseng
dc.subject.keywordlight chaineng
dc.subject.keywordmolecular dockingeng
dc.subject.keywordMycobacterium tuberculosiseng
dc.subject.keywordprotein lipid interactioneng
dc.subject.keywordprotein structureeng
dc.subject.keywordT lymphocyteeng
dc.subject.keywordtuberculosiseng
dc.relation.citationvolume11
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationCamacho, F., Biologicals Sciences School, University of Concepcion, Concepcion, Chile
dc.affiliationMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
dc.affiliationGarcia-Alles, L.F., TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
dc.affiliationChinea Santiago, G., Center for Genetic Engineering and Biotechnology, Havana, Cuba
dc.affiliationGilleron, M., Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
dc.affiliationVasquez, A., Biologicals Sciences School, University of Concepcion, Concepcion, Chile
dc.affiliationChoong, Y.S., Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
dc.affiliationReyes, F., Biologicals Sciences School, University of Concepcion, Concepcion, Chile
dc.affiliationNorazmi, M.N., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
dc.affiliationSarmiento, M.E., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
dc.affiliationAcosta, A., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
dc.relation.references(2019) Global Tuberculosis Report Geneva:(2019), , Geneva, World Health Organization
dc.relation.referencesFloyd, K., Glaziou, P., Zumla, A., Raviglione, M., The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era (2018) Lancet Respirat Med, 6, pp. 299-314
dc.relation.referencesAcharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis (2020) Mol Biol Rep, 47, pp. 4065-4075. , 32248381
dc.relation.referencesHurley, C.K., Naming HLA diversity: a review of HLA nomenclature (2020) Hum Immunol, , (in press)., 32307125
dc.relation.referencesRobinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G., Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles (2017) PLoS Genet, 13 (e1006862). , 28650991
dc.relation.referencesScriba, T.J., Coussens, A.K., Fletcher, H.A., Human immunology of tuberculosis (2017) Microbiol Spectr, 5, pp. 213-237
dc.relation.referencesSia, J.K., Rengarajan, J., Immunology of Mycobacterium tuberculosis infections (2019) Gram Positive Pathogens, 7, pp. 1056-1086
dc.relation.referencesBettencourt, P., Müller, J., Nicastri, A., Cantillon, D., Madhavan, M., Charles, P.D., Identification of antigens presented by MHC for vaccines against tuberculosis (2020) NPJ Vaccines, 5, pp. 1-14. , 31908851
dc.relation.referencesChancellor, A., Gadola, S.D., Mansour, S., The versatility of the CD 1 lipid antigen presentation pathway (2018) Immunology, 154, pp. 196-203. , 29460282
dc.relation.referencesMori, L., De Libero, G., Presentation of lipid antigens to T cells (2008) Immunol Lett, 117, pp. 1-8. , 18243339
dc.relation.referencesVan Rhijn, I., Moody, D.B., CD 1 and mycobacterial lipids activate human T cells (2015) Immunol Rev, 264, pp. 138-153. , 25703557
dc.relation.referencesLepore, M., Mori, L., De Libero, G., The conventional nature of non-MHC-restricted T cells (2018) Front Immunol, 9 (1365). , 29963057
dc.relation.referencesGilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Böhmer, G., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis (2004) J Exp Med, 199, pp. 649-659. , 14981115
dc.relation.referencesGuiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response (2009) J Immunol, 182, pp. 7030-7037. , 19454700
dc.relation.referencesGarcia−Alles, L.F., Versluis, K., Maveyraud, L., Vallina, A.T., Sansano, S., Bello, N.F., Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid−binding groove of CD1b (2006) EMBO J, 25, pp. 3684-3692. , 16874306
dc.relation.referencesBatuwangala, T., Shepherd, D., Gadola, S.D., Gibson, K.J., Zaccai, N.R., Fersht, A.R., The crystal structure of human CD1b with a bound bacterial glycolipid (2004) J Immunol, 172, pp. 2382-2388. , 14764708
dc.relation.referencesGadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains (2002) Nat Immunol, 3, pp. 721-726. , 12118248
dc.relation.referencesGarcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids (2011) Proc Natl Acad Sci USA, 108, pp. 17755-17760. , 22006319
dc.relation.referencesGarcia-Alles, L.F., Giacometti, G., Versluis, C., Maveyraud, L., de Paepe, D., Guiard, J., Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes (2011) Proc Natl Acad Sci USA, 108, pp. 13230-13235. , 21788486
dc.relation.referencesCamacho, F., Sarmiento, M.E., Reyes, F., Kim, L., Huggett, J., Lepore, M., Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL (2016) Int J Mycobacteriol, 5, pp. 120-127. , 27242221
dc.relation.referencesDass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A∗ 11 and HLA-A∗ 24 (2020) Int J Biol Macromol, 155, pp. 305-314. , 32240734
dc.relation.referencesDass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A∗ 02 (2018) Mol Immunol, 101, pp. 189-196. , 30007228
dc.relation.referencesCamacho, F., Huggett, J., Kim, L., Infante, J.F., Lepore, M., Perez, V., (2013) Phage display of Functional αβ Single-Chain T-Cell Receptor Molecules Specific for CD1b: Ac 2 SGL Complexes From Mycobacterium Tuberculosis-Infected Cells, BMC Immunology, , London, BioMed Central, p. S2., 23458512
dc.relation.referencesGau, B., Lemétais, A., Lepore, M., Garcia-Alles, L.F., Bourdreux, Y., Mori, L., Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity (2013) ChemBioChem, 14, pp. 2413-2417. , 24174158
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graphics, 14, pp. 33-38
dc.relation.referencesHanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J Cheminform, 4 (17). , 22889332
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., SWISS-MODEL: homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 29788355
dc.relation.referencesBrooks, B.R., Brooks, C.L., III, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., CHARMM: the biomolecular simulation program (2009) J Comput Chem, 30, pp. 1545-1614. , 19444816
dc.relation.referencesGras, S., Van Rhijn, I., Shahine, A., Cheng, T.-Y., Bhati, M., Tan, L.L., T cell receptor recognition of CD1b presenting a mycobacterial glycolipid (2016) Nat Commun, 7, pp. 1-12. , 27807341
dc.relation.referencesShahine, A., Van Rhijn, I., Cheng, T.-Y., Iwany, S., Gras, S., Moody, D.B., A molecular basis of human T cell receptor autoreactivity toward self-phospholipids (2017) Sci Immunol, 2 (16). , 29054999
dc.relation.referencesShahine, A., Reinink, P., Reijneveld, J.F., Gras, S., Holzheimer, M., Cheng, T.-Y., A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids (2019) Nat Commun, 10, pp. 1-12
dc.relation.referencesLensink, M.F., Velankar, S., Wodak, S.J., Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition (2017) Proteins, 85, pp. 359-377. , 27865038
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem