Show simple item record

dc.creatorValencia G.M.
dc.creatorAnaya J.A.
dc.creatorVelásquez É.A.
dc.creatorRamo R.
dc.creatorCaro-Lopera F.J.
dc.descriptionThis paper proposes a validation-comparison method for burned area (BA) products. The technique considers: (1) bootstrapping of scenes for validation-comparison and (2) permutation tests for validation. The research focuses on the tropical regions of Northern Hemisphere South America and Northern Hemisphere Africa and studies the accuracy of the BA products: MCD45, MCD64C5.1, MCD64C6, Fire CCI C4.1, and Fire CCI C5.0. The first and second parts consider methods based on random matrix theory for zone differentiation and multiple ancillary variables such as BA, the number of burned fragments, ecosystem type, land cover, and burned biomass. The first method studies the zone effect using bootstrapping of Riemannian, full Procrustes, and partial Procrustes distances. The second method explores the validation by using distance permutation tests under uncertainty. The results refer to Fire CCI 5.0 with the best BA description, followed by MCD64C6, MCD64C5.1, MCD45, and Fire CCI 4.1. It was also found that biomass, total BA, and the number of fragments affect the BA product accuracy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
dc.publisherMDPI AG
dc.sourceRemote Sensing
dc.subjectPermutation testspa
dc.subjectRandom matrix theoryspa
dc.subjectRiemannian distancespa
dc.subjectRobust statisticsspa
dc.subjectValidation and comparison of BA productsspa
dc.titleAbout validation-comparison of burned area products
dc.publisher.programTronco común Ingenieríasspa
dc.publisher.programIngeniería Ambientalspa
dc.subject.keywordRandom variableseng
dc.subject.keywordBurned biomasseng
dc.subject.keywordComparison methodseng
dc.subject.keywordNorthern Hemisphereseng
dc.subject.keywordPermutation testseng
dc.subject.keywordProcrustes distanceeng
dc.subject.keywordRandom matrix theoryeng
dc.subject.keywordResearch focuseng
dc.subject.keywordTropical regionseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationValencia, G.M., Facultad de Ingenierías, Universidad de San Buenaventura, Medellín, 050010, Colombia, Facultad de Ingenierías, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationAnaya, J.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationVelásquez, É.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRamo, R., Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain
dc.affiliationCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.relation.referencesVan Der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P., Morton, D.C., Van Leeuwen, T.T., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009) (2010) Atmos. Chem. Phys. Discuss, 10, pp. 11707-11735. , [CrossRef]
dc.relation.referencesPadilla-Parellada, M., Stehman, S., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Mota, B.W., Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation (2015) Remote. Sens. Environ, 160, pp. 114-121. , [CrossRef]
dc.relation.referencesGiglio, L., Randerson, J.T., Van Der Werf, G.R., Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) (2013) J. Geophys. Res. Biogeosci, 118, pp. 317-328. , [CrossRef]
dc.relation.referencesGiglio, L., Boschetti, L., Roy, D.P., Humber, M.L., Justice, C., The Collection 6 MODIS burned area mapping algorithm and product (2018) Remote Sens. Environ, 217, pp. 72-85. , [CrossRef] [PubMed]
dc.relation.referencesAnaya-Acevedo, J.A., Colditz, R.R., Valencia, G.M., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sens, 7, pp. 16274-16292. , [CrossRef]
dc.relation.referencesRanderson, J.T., Chen, Y., Van Der Werf, G.R., Rogers, B.M., Morton, D.C., Global burned area and biomass burning emissions from small fires (2012) J. Geophys. Res. Space Phys, 117. , [CrossRef]
dc.relation.referencesJuárez-Orozco, S.M., Siebe, C., Fernández, D.F.Y., Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach (2017) Trop. Conserv. Sci, 10. , [CrossRef]
dc.relation.referencesGiglio, L., Randerson, J.T., Van Der Werf, G.R., Kasibhatla, P., Collatz, G.J., Morton, D.C., DeFries, R.S., Assessing variability and long-term trends in burned area by merging multiple satellite fire products (2010) Biogeosciences, 7, pp. 1171-1186. , [CrossRef]
dc.relation.referencesChuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Heil, A., Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies (2018) Earth Syst. Sci. Data, 10, pp. 2015-2031. , [CrossRef]
dc.relation.referencesAvitabile, V., Herold, M., Heuvelink, G.B.M., Lewis, S.L., Phillips, O.L., Asner, G.P., Armston, J.D., Bayol, N., An integrated pan-tropical biomass map using multiple reference datasets (2016) Glob. Chang. Boil, 22, pp. 1406-1420. , [CrossRef]
dc.relation.referencesHu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., Guo, Q., Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data (2016) Remote Sens, 8, p. 565. , [CrossRef]
dc.relation.referencesRodríguez-Veiga, P., Wheeler, J., Louis, V., Tansey, K., Balzter, H., Quantifying Forest Biomass Carbon Stocks From Space (2017) Curr. Rep, 3, pp. 1-18. , [CrossRef]
dc.relation.referencesVan Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, B.M., Marle, M., James, G., Global fire emissions estimates during 1997–2016 (2017) Earth Syst. Sci. Data, 9, pp. 697-720. , [CrossRef]
dc.relation.referencesVan Marle, M., Kloster, S., Magi, B.I., Marlon, J., Daniau, A.-L., Field, R.D., Arneth, A., Kehrwald, N.M., Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015) (2017) Geosci. Model. Dev, 10, pp. 3329-3357. , [CrossRef]
dc.relation.referencesPadilla, M., Stehman, S.V., Chuvieco, E., Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling (2014) Remote Sens. Environ, 144, pp. 187-196. , [CrossRef]
dc.relation.referencesBoschetti, L., Stehman, S.V., Roy, D.P., A stratified random sampling design in space and time for regional to global scale burned area product validation (2016) Remote Sens. Environ, 186, pp. 465-478. , [CrossRef]
dc.relation.referencesArmenteras, D., Gibbes, C., Anaya-Acevedo, J.A., Dávalos, L.M., Integrating remotely sensed fires for predicting deforestation for REDD+ (2017) Ecol. Appl, 27, pp. 1294-1304. , [CrossRef]
dc.relation.referencesAndela, N., Van Der Werf, G.R., Kaiser, J.W., Van Leeuwen, T.T., Wooster, M.J., Lehmann, C., Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite (2016) Biogeosciences, 13, pp. 3717-3734. , [CrossRef]
dc.relation.referencesSantana, L.D., Ribeiro, J.H.C., Berg, E.V.D., Carvalho, F.A., Impact on soil and tree community of a threatened subtropical phytophysiognomy after a forest fire (2020) Folia Geobot. Et Phytotaxon, , [CrossRef]
dc.relation.referencesChu, T., Guo, X., Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review (2013) Remote Sens, 6, pp. 470-520. , [CrossRef]
dc.relation.referencesPalomino, S., Anaya, J.A., Evaluation of the Causes of Error in the Mcd45 Burned-Area Product for the Savannas of Northern South America (2012) Dyna Colomb, 79, pp. 35-44
dc.relation.referencesRoy, D., Boschetti, L., Justice, C.O., Ju, J., The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product (2008) Remote Sens. Environ, 112, pp. 3690-3707. , [CrossRef]
dc.relation.referencesCongalton, R.G., Green, K., (2009) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, , 2nd ed.
dc.relation.referencesLewis Publishers: Sound Parkway-Boca Raton, FL, USA
dc.relation.referencesBoschetti, L., Roy, D.P., Justice, C.O., (2010) CEOS International Global Burned Area Satellite Product Validation Protocol, Part I—Production and Standardization of Validation Reference Data, ,, (accessed on 7 March 2019)
dc.relation.referencesSchepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J.V., Goossens, R., Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX) (2014) Remote Sens, 6, pp. 1803-1826. , [CrossRef]
dc.relation.referencesNogueira, J., Ruffault, J., Chuvieco, E., Mouillot, F., Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? (2016) Remote Sens, 9, p. 7. , [CrossRef]
dc.relation.referencesSingh, G., (2008) A Multi-Sensor Approach For. Burned Area Extraction Due to Crop. Residue Burning Using Multi-Temporal Satellite Data, ,, Degre of Master of Science in Geo-information Science and Earth Observation, ITC Netherlands and IIRS India. (accessed on 21 May 2019)
dc.relation.referencesLong, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., Zhang, X., Yin, R., 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine (2019) Remote Sens, 11, p. 489. , [CrossRef]
dc.relation.referencesRoy, D.P., Frost, P.G.H., Justice, C.O., Landmann, T., Le Roux, J.L., Gumbo, K., Makungwa, S., Mhwandagara, K., The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol (2005) Int. J. Remote Sens, 26, pp. 4265-4292. , [CrossRef]
dc.relation.referencesRoy, D., Boschetti, L., Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products (2009) IEEE Trans. Geosci. Remote Sens, 47, pp. 1032-1044. , [CrossRef]
dc.relation.referencesDe Santis, A., Chuvieco, E., Vaughan, P.J., Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models (2009) Remote Sens. Environ, 113, pp. 126-136. , [CrossRef]
dc.relation.referencesNegri, J.A., (2016) Evaluation and Validation of Multiple Predictive Models Applied to Post-Wildfire Debris-Flow Hazards, ,, Degree of Master of Science (Geological Engineering), Colorado School of Mines. (accessed on 8 August 2020)
dc.relation.referencesGhasemi, A., Zahediasl, S., Normality Tests for Statistical Analysis: A Guide for Non-Statisticians (2012) Int. J. Endocrinol. Metab, 10, pp. 486-489. , [CrossRef]
dc.relation.referencesLimpert, E., Stahel, W.A., Problems with Using the Normal Distribution—And Ways to Improve Quality and Efficiency of Data Analysis (2011) PLoS ONE, 6, p. e21403. , [CrossRef]
dc.relation.referencesStahl, S., Evolution of the Normal Distribution (2014) Mathematics Magazine, pp. 96-113. , Taylor & Francis: Beloit, WI, USA
dc.relation.referencesFaraway, J.J., (2005) Linear Models with R
dc.relation.referencesTexts in Statistical Science Series, , Chapman & Hall/CRC: Boca Raton, FL, USA
dc.relation.referencesRoteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E., Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa (2019) Remote Sens. Environ, 222, pp. 1-17. , [CrossRef]
dc.relation.referencesRoy, D.P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H.K., Li, Z., Landsat-8 and Sentinel-2 burned area mapping—A combined sensor multi-temporal change detection approach (2019) Remote Sens. Environ, 231, p. 111254. , [CrossRef]
dc.relation.referencesBoschetti, L., Roy, D.P., Giglio, L., Huang, H., Zubkova, M., Humber, M.L., Global validation of the collection 6 MODIS burned area product (2019) Remote Sens. Environ, 235, p. 111490. , [CrossRef] [PubMed]
dc.relation.referencesValencia, G.M., Anaya-Acevedo, J.A., Caro-Lopera, F.J., Implementación y evaluación del modelo Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS): Estudio de caso en los Andes colombianos (2016) Rev. Teledetección, 46, p. 83. , [CrossRef]
dc.relation.referencesCook, J.R., Stefanski, L.A., Simulation-Extrapolation Estimation in Parametric Simulation-Extrapolation Estimation in Parametric Measurement Error Models (1994) J. Am. Stat. Assoc, 89, pp. 1314-1328. , [CrossRef]
dc.relation.referencesGiglio, L., Csiszar, I., Justice, C.O., Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (2006) J. Geophys. Res. Space Phys, 111, pp. 1-12. , [CrossRef]
dc.relation.referencesAlvarado, S.T., Fornazari, T., Costola, A., Morellato, L.P.C., Silva, T., Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing (2017) Ecol. Indic, 78, pp. 270-281. , [CrossRef]
dc.relation.referencesAlvarado, S.T., Silva, T., Archibald, S.A., Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas (2018) J. Environ. Manag, 218, pp. 79-87. , [CrossRef]
dc.relation.referencesDong, X., Fu, J.S., Huang, K., Lin, N.-H., Wang, S.-H., Yang, C.-E., Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region (2018) Sci. Rep, 8, p. 8962. , [CrossRef]
dc.relation.referencesHurteau, M.D., Liang, S., Westerling, A.L., Wiedinmyer, C., Vegetation-fire feedback reduces projected area burned under climate change (2019) Sci. Rep, 9, p. 2838. , [CrossRef]
dc.relation.referencesKettridge, N., Lukenbach, M., Hokanson, K., Hopkinson, C., Devito, K., Petrone, R., Mendoza, C., Waddington, J.M., Extreme wildfire exposes remnant peat carbon stocks to increased post-fire drying (2018) Proceedings of the 20th EGU General Assembly Conference Abstracts EGU2018, 20, p. 8399. , Vienna, Austria, 4–13 April
dc.relation.referencesMouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., Chuvieco, E., Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments (2014) Int. J. Appl. Earth Obs. Geoinf, 26, pp. 64-79. , [CrossRef]
dc.relation.referencesGiglio, L., Van Der Werf, G.R., Randerson, J.T., Collatz, G.J., Kasibhatla, P., Global estimation of burned area using MODIS active fire observations (2005) Atmos. Chem. Phys. Discuss, 5, pp. 11091-11141. , [CrossRef]
dc.relation.referencesBastarrika, A., Alvarado, M., Artano, K., Martínez, M.P., Mesanza-Moraza, A., Torre-Tojal, L., Ramo, R., Chuvieco, E., BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data (2014) Remote Sens, 6, pp. 12360-12380. , [CrossRef]
dc.relation.referencesMasek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Lim, T.K., A Landsat Surface Reflectance Dataset for North America, 1990–2000 (2006) IEEE Geosci. Remote Sens. Lett, 3, pp. 68-72. , [CrossRef]
dc.relation.referencesClaverie, M., Vermote, E., Franch, B., Masek, J.G., Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products (2015) Remote Sens. Environ, 169, pp. 390-403. , [CrossRef]
dc.relation.referencesChuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J.M.C., Tansey, K., A new global burned area product for climate assessment of fire impacts (2016) Glob. Ecol. Biogeogr, 25, pp. 619-629. , [CrossRef]
dc.relation.referencesOlson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood, E.C., D’amico, J.A., Morrison, J.C., Terrestrial Ecoregions of the World: A New Map of Life on Earth (2001) Bioscience, 51, pp. 933-938. , [CrossRef]
dc.relation.references(2017) Land Cover CCI Product User Guide Version 2, ,, ESA. Tech. Rep. (accessed on 8 August 2020)
dc.relation.referencesDryden, I.L., Mardia, K.V., (2016) Statistical Shape Analysis, with Applications in R, , Wiley: Chichester, West Sussex, UK
dc.relation.referencesQuintero, J.H., Mariño, A., Šiller, L., Restrepo-Parra, E., Caro-Lopera, F., Rocking curves of gold nitride species prepared by arc pulsed—Physical assisted plasma vapor deposition (2017) Surf. Coat. Technol, 309, pp. 249-257. , [CrossRef]
dc.relation.referencesArias, E., Caro-Lopera, F.J., Florez, E., Pérez-Torres, J.F., Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters: Cu8, Ag8 and Ag18 as study cases (2019) J. Phys. Conf. Ser, 1247, p. 012008. , [CrossRef]
dc.relation.referencesVillarreal-Rios, A.L., Calle, A.H.B., Caro-Lopera, F.J., Ortiz-Méndez, U., García-Méndez, M., Pérez-Ramírez, F.O., Ultrathin tunable conducting oxide films for near-IR applications: An introduction to spectroscopy shape theory (2019) SN Appl. Sci, 1, p. 1553. , [CrossRef]
dc.relation.referencesBoschetti, L., Roy, D.P., Justice, C., Humber, M.L., MODIS–Landsat fusion for large area 30m burned area mapping (2015) Remote Sens. Environ, 161, pp. 27-42. , [CrossRef]

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record